benchmark_throughput.py 8.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259
  1. import argparse
  2. import multiprocessing as mp
  3. import random
  4. import sys
  5. import time
  6. import torch
  7. import hivemind
  8. from hivemind import P2P
  9. from hivemind.dht import DHT
  10. from hivemind.moe.client.expert import RemoteExpertWorker
  11. from hivemind.moe.server import layers
  12. from hivemind.utils.limits import increase_file_limit
  13. from hivemind.utils.logging import get_logger, use_hivemind_log_handler
  14. use_hivemind_log_handler("in_root_logger")
  15. logger = get_logger(__name__)
  16. def print_device_info(device=None):
  17. """Prints device stats. Code from https://stackoverflow.com/a/53374933/12891528"""
  18. device = torch.device(device or ("cuda" if torch.cuda.is_available() else "cpu"))
  19. logger.info(f"Using device: {device}")
  20. # Additional Info when using cuda
  21. if device.type == "cuda":
  22. logger.info(torch.cuda.get_device_name(0))
  23. logger.info(f"Memory Usage:")
  24. logger.info(f"Allocated: {round(torch.cuda.memory_allocated(0) / 1024 ** 3, 1)} GB")
  25. logger.info(f"Cached: {round(torch.cuda.memory_cached(0) / 1024 ** 3, 1)} GB")
  26. def client_process(
  27. can_start,
  28. benchmarking_failed,
  29. server_peer_info,
  30. num_experts,
  31. batch_size,
  32. hid_dim,
  33. num_batches,
  34. backprop=True,
  35. ) -> None:
  36. torch.set_num_threads(1)
  37. can_start.wait()
  38. p2p = RemoteExpertWorker.run_coroutine(P2P.create())
  39. RemoteExpertWorker.run_coroutine(p2p._client.connect(server_peer_info.peer_id, server_peer_info.addrs))
  40. experts = [
  41. hivemind.RemoteExpert(f"expert.{i}", server_peer_info=server_peer_info, p2p=p2p) for i in range(num_experts)
  42. ]
  43. try:
  44. dummy_batch = torch.randn(batch_size, hid_dim)
  45. for batch_i in range(num_batches):
  46. expert = random.choice(experts)
  47. out = expert(dummy_batch)
  48. if backprop:
  49. out.sum().backward()
  50. except BaseException as e:
  51. benchmarking_failed.set()
  52. raise e
  53. def benchmark_throughput(
  54. num_experts=16,
  55. num_handlers=None,
  56. num_clients=128,
  57. num_batches_per_client=16,
  58. expert_cls="ffn",
  59. hid_dim=1024,
  60. batch_size=2048,
  61. max_batch_size=None,
  62. backprop=True,
  63. device=None,
  64. ):
  65. assert (
  66. not hasattr(torch.cuda, "is_initialized")
  67. or not torch.cuda.is_initialized()
  68. or torch.device(device) == torch.device("cpu")
  69. )
  70. assert expert_cls in layers.name_to_block
  71. max_batch_size = max_batch_size or batch_size * 4
  72. num_handlers = max(1, num_handlers or num_clients // 2)
  73. benchmarking_failed = mp.Event()
  74. can_start = mp.Event()
  75. timestamps = dict(started=time.perf_counter())
  76. try:
  77. server_dht = DHT(start=True)
  78. server_dht_peer_info = hivemind.PeerInfo(
  79. peer_id=server_dht.peer_id,
  80. addrs=[addr.decapsulate("/p2p/" + addr.get("p2p")) for addr in server_dht.get_visible_maddrs()],
  81. )
  82. clients = [
  83. mp.Process(
  84. target=client_process,
  85. name=f"client_process-{i}",
  86. args=(
  87. can_start,
  88. benchmarking_failed,
  89. server_dht_peer_info,
  90. num_experts,
  91. batch_size,
  92. hid_dim,
  93. num_batches_per_client,
  94. backprop,
  95. ),
  96. daemon=True,
  97. )
  98. for i in range(num_clients)
  99. ]
  100. for client in clients:
  101. client.start()
  102. timestamps["launched_clients"] = timestamps["began_launching_server"] = time.perf_counter()
  103. device = device or ("cuda" if torch.cuda.is_available() else "cpu")
  104. experts = {}
  105. for i in range(num_experts):
  106. expert = torch.jit.script(layers.name_to_block[expert_cls](hid_dim))
  107. experts[f"expert.{i}"] = hivemind.ExpertBackend(
  108. name=f"expert.{i}",
  109. expert=expert,
  110. optimizer=torch.optim.Adam(expert.parameters()),
  111. args_schema=(hivemind.BatchTensorDescriptor(hid_dim),),
  112. outputs_schema=hivemind.BatchTensorDescriptor(hid_dim),
  113. max_batch_size=max_batch_size,
  114. )
  115. timestamps["created_experts"] = time.perf_counter()
  116. server = hivemind.moe.Server(
  117. dht=server_dht,
  118. expert_backends=experts,
  119. num_connection_handlers=num_handlers,
  120. device=device,
  121. )
  122. server.start()
  123. server.ready.wait()
  124. timestamps["server_ready"] = time.perf_counter()
  125. can_start.set()
  126. for client in clients:
  127. client.join()
  128. timestamps["clients_finished"] = time.perf_counter()
  129. except BaseException as e:
  130. benchmarking_failed.set()
  131. raise e
  132. finally:
  133. for client in clients:
  134. if client.is_alive():
  135. client.terminate()
  136. server.shutdown()
  137. timestamps["server_shutdown_finished"] = time.perf_counter()
  138. server.join()
  139. sys.stdout.flush()
  140. sys.stderr.flush()
  141. time_between = (
  142. lambda key1, key2: abs(timestamps[key2] - timestamps[key1])
  143. if (key1 in timestamps and key2 in timestamps)
  144. else float("nan")
  145. )
  146. total_examples = batch_size * num_clients * num_batches_per_client
  147. logger.info("Benchmark finished, status:" + ["Success", "Failure"][benchmarking_failed.is_set()])
  148. logger.info(
  149. f"Server parameters: num_experts={num_experts}, num_handlers={num_handlers}, "
  150. f"max_batch_size={max_batch_size}, expert_cls={expert_cls}, hid_dim={hid_dim}, device={device}"
  151. )
  152. logger.info(
  153. f"Client parameters: num_clients={num_clients}, num_batches_per_client={num_batches_per_client}, "
  154. f"batch_size={batch_size}, backprop={backprop}"
  155. )
  156. logger.info("Results: ")
  157. logger.info(
  158. f"\tServer startup took {time_between('began_launching_server', 'server_ready') :.3f} s. "
  159. f"({time_between('began_launching_server', 'created_experts') :.3f} s. experts + "
  160. f"{time_between('created_experts', 'server_ready') :.3f} s. networking)"
  161. )
  162. logger.info(f"\tProcessed {total_examples} examples in {time_between('server_ready', 'clients_finished') :.3f}")
  163. logger.info(
  164. f"\tThroughput for {'forward + backward' if backprop else 'forward'} passes: "
  165. f"{total_examples / time_between('server_ready', 'clients_finished') :.3f} samples / s."
  166. )
  167. logger.info(f"\tBenchmarking took {time_between('started', 'server_shutdown_finished') :.3f} s.")
  168. if benchmarking_failed.is_set():
  169. logger.info("Note: benchmark code failed, timing/memory results only indicate time till failure!")
  170. print_device_info(device)
  171. sys.stdout.flush()
  172. sys.stderr.flush()
  173. assert not benchmarking_failed.is_set()
  174. if __name__ == "__main__":
  175. parser = argparse.ArgumentParser()
  176. parser.add_argument("--preset", type=str, default="default", required=False)
  177. parser.add_argument("--num_batches_per_client", type=int, default=16, required=False)
  178. args = parser.parse_args()
  179. if args.preset in ("default", "ffn_forward_backward"):
  180. benchmark_throughput()
  181. elif args.preset == "ffn_forward":
  182. benchmark_throughput(backprop=False, num_batches_per_client=args.num_batches_per_client)
  183. elif args.preset == "ffn_small_batch":
  184. benchmark_throughput(
  185. backprop=False,
  186. num_experts=4,
  187. batch_size=32,
  188. max_batch_size=8192,
  189. num_batches_per_client=args.num_batches_per_client,
  190. )
  191. elif args.preset == "ffn_small_batch_512clients":
  192. benchmark_throughput(
  193. backprop=True,
  194. num_experts=1,
  195. batch_size=1,
  196. max_batch_size=8192,
  197. num_clients=512,
  198. num_batches_per_client=args.num_batches_per_client,
  199. )
  200. elif args.preset == "ffn_small_batch_512clients_32handlers":
  201. benchmark_throughput(
  202. backprop=True,
  203. num_experts=1,
  204. batch_size=1,
  205. max_batch_size=8192,
  206. num_handlers=32,
  207. num_clients=512,
  208. num_batches_per_client=args.num_batches_per_client,
  209. )
  210. elif args.preset == "ffn_massive":
  211. increase_file_limit()
  212. benchmark_throughput(
  213. backprop=False,
  214. num_clients=512,
  215. batch_size=512,
  216. max_batch_size=8192,
  217. num_batches_per_client=args.num_batches_per_client,
  218. )
  219. elif args.preset == "minimalistic":
  220. benchmark_throughput(
  221. num_experts=1,
  222. num_clients=1,
  223. num_handlers=1,
  224. num_batches_per_client=args.num_batches_per_client,
  225. batch_size=1024,
  226. )
  227. elif args.preset == "nop":
  228. benchmark_throughput(expert_cls="nop", backprop=False, num_batches_per_client=args.num_batches_per_client)
  229. else:
  230. raise ValueError(f"No such benchmark preset: {args.preset}")