test_moe.py 7.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167
  1. import grpc
  2. import numpy as np
  3. import pytest
  4. import torch
  5. import hivemind
  6. from hivemind.client.expert import DUMMY
  7. from hivemind import background_server
  8. def test_moe():
  9. all_expert_uids = [f'ffn.{np.random.randint(0, 3)}.{np.random.randint(0, 3)}.{np.random.randint(0, 3)}'
  10. for _ in range(20)]
  11. with background_server(expert_uids=all_expert_uids, device='cpu', expert_cls='ffn',
  12. num_handlers=1, hidden_dim=16) as (server_endpoint, dht_endpoint):
  13. dht = hivemind.DHT(start=True, expiration=999, initial_peers=[dht_endpoint])
  14. dmoe = hivemind.RemoteMixtureOfExperts(
  15. in_features=16, grid_size=(32, 32, 32), dht=dht, k_best=3, uid_prefix='ffn.')
  16. for i in range(10):
  17. out = dmoe(torch.randn(10, 16))
  18. out.sum().backward()
  19. def test_call_many():
  20. k_min = 1
  21. timeout_after_k_min = None
  22. backward_k_min = 1
  23. forward_timeout = None
  24. backward_timeout = None
  25. rtol = 1e-3
  26. atol = 1e-5
  27. with background_server(num_experts=5, device='cpu', expert_cls='ffn', num_handlers=8, hidden_dim=64,
  28. optim_cls=None, no_dht=True) as (server_endpoint, dht_endpoint):
  29. inputs = torch.randn(4, 64, requires_grad=True)
  30. inputs_clone = inputs.clone().detach().requires_grad_(True)
  31. e0, e1, e2, e3, e4 = [hivemind.RemoteExpert(f'expert.{i}', server_endpoint) for i in range(5)]
  32. e5 = hivemind.RemoteExpert(f'thisshouldnotexist', '127.0.0.1:80')
  33. mask, expert_outputs = hivemind.client.moe._RemoteCallMany.apply(
  34. DUMMY, [[e0, e1, e2], [e2, e4], [e1, e5, e3], []],
  35. k_min, backward_k_min, timeout_after_k_min, forward_timeout, backward_timeout, e1.info, inputs
  36. )
  37. assert mask.shape == (4, 3)
  38. assert expert_outputs.shape == (4, 3, 64)
  39. assert np.all(mask.data.numpy() == np.array([[True, True, True],
  40. [True, True, False],
  41. [True, False, True],
  42. [False, False, False]])), f"Incorrect mask, {mask}"
  43. reference_outputs = torch.zeros_like(expert_outputs)
  44. reference_outputs[0, 0] = e0(inputs_clone[0:1])
  45. reference_outputs[0, 1] = e1(inputs_clone[0:1])
  46. reference_outputs[0, 2] = e2(inputs_clone[0:1])
  47. reference_outputs[1, 0] = e2(inputs_clone[1:2])
  48. reference_outputs[1, 1] = e4(inputs_clone[1:2])
  49. reference_outputs[2, 0] = e1(inputs_clone[2:3])
  50. reference_outputs[2, 2] = e3(inputs_clone[2:3])
  51. assert torch.allclose(expert_outputs, reference_outputs, rtol, atol)
  52. proj = torch.randn(4, 64)
  53. loss = (expert_outputs[(0, 1, 1, 2), (0, 2, 1, 0)] * proj).sum()
  54. loss.backward()
  55. our_grad = inputs.grad.data.cpu().clone()
  56. reference_loss = (reference_outputs[(0, 1, 1, 2), (0, 2, 1, 0)] * proj).sum()
  57. reference_loss.backward()
  58. reference_grad = inputs_clone.grad.data.cpu().clone()
  59. assert torch.allclose(our_grad, reference_grad, rtol, atol)
  60. def test_remote_module_call():
  61. with background_server(num_experts=1, device='cpu', expert_cls='ffn', num_handlers=1, hidden_dim=1024,
  62. optim_cls=None, no_dht=True) as (server_endpoint, dht_endpoint):
  63. real_expert = hivemind.RemoteExpert('expert.0', server_endpoint)
  64. fake_expert = hivemind.RemoteExpert('oiasfjiasjf', server_endpoint)
  65. out1 = real_expert(torch.randn(1, 1024))
  66. assert out1.shape == (1, 1024)
  67. dummy_x = torch.randn(3, 1024, requires_grad=True)
  68. out3 = real_expert(dummy_x)
  69. assert out3.shape == (3, 1024)
  70. out3_again = real_expert(dummy_x[1:])
  71. assert torch.allclose(out3_again, out3[1:])
  72. out3_again.norm().backward()
  73. assert dummy_x.grad is not None and dummy_x.grad.norm() > 0
  74. with pytest.raises(grpc.RpcError):
  75. real_expert(torch.randn(3, 11))
  76. with pytest.raises(grpc.RpcError):
  77. fake_expert(dummy_x)
  78. def test_beam_search_correctness():
  79. all_expert_uids = [f'ffn.{5 + i}.{10 + j}.{15 + k}' for i in range(10) for j in range(10) for k in range(10)]
  80. dht = hivemind.DHT(start=True, expiration=999)
  81. assert all(dht.declare_experts(all_expert_uids, endpoint='fake-endpoint'))
  82. dmoe = hivemind.RemoteMixtureOfExperts(
  83. in_features=32, grid_size=(32, 32, 32), dht=dht, k_best=4, uid_prefix='ffn.')
  84. for i in range(25):
  85. input = torch.randn(32)
  86. grid_scores = dmoe.proj(input).split_with_sizes(dmoe.grid_size, dim=-1)
  87. chosen_experts = dht.find_best_experts(dmoe.uid_prefix, [tensor.detach().numpy() for tensor in grid_scores],
  88. beam_size=dmoe.k_best)
  89. chosen_scores = dmoe.compute_expert_scores([dim_scores[None] for dim_scores in grid_scores],
  90. [chosen_experts])[0]
  91. our_best_scores = list(chosen_scores.cpu().detach().numpy())
  92. # reference: independently find :beam_size: best experts with exhaustive search
  93. all_scores = dmoe.compute_expert_scores([dim_scores.unsqueeze(0) for dim_scores in grid_scores],
  94. [[hivemind.RemoteExpert(uid, '') for uid in all_expert_uids]])[0]
  95. true_best_scores = sorted(all_scores.cpu().detach().numpy(), reverse=True)[:len(chosen_experts)]
  96. assert np.allclose(true_best_scores, our_best_scores)
  97. def test_determinism():
  98. rtol = 0
  99. atol = 1e-5
  100. xx = torch.randn(32, 1024, requires_grad=True)
  101. mask = torch.randint(0, 1, (32, 1024))
  102. with background_server(num_experts=1, device='cpu', expert_cls='det_dropout', num_handlers=1,
  103. optim_cls=None, no_dht=True) as (server_endpoint, dht_endpoint):
  104. expert = hivemind.RemoteExpert(uid=f'expert.0', endpoint=server_endpoint)
  105. out = expert(xx, mask)
  106. out_rerun = expert(xx, mask)
  107. grad, = torch.autograd.grad(out.sum(), xx, retain_graph=True)
  108. grad_rerun, = torch.autograd.grad(out_rerun.sum(), xx, retain_graph=True)
  109. assert torch.allclose(out, out_rerun, rtol, atol), "Dropout layer outputs are non-deterministic."
  110. assert torch.allclose(grad, grad_rerun, rtol, atol), "Gradients are non-deterministic."
  111. def test_compute_expert_scores():
  112. try:
  113. dht = hivemind.DHT(start=True)
  114. moe = hivemind.client.moe.RemoteMixtureOfExperts(
  115. dht=dht, in_features=1024, grid_size=(40,), k_best=4, k_min=1, timeout_after_k_min=1,
  116. uid_prefix='expert.')
  117. gx, gy = torch.randn(4, 5, requires_grad=True), torch.randn(4, 3, requires_grad=True)
  118. ii = [[4, 0, 2], [3, 1, 1, 1, 3], [0], [3, 2]]
  119. jj = [[2, 2, 1], [0, 1, 2, 0, 1], [0], [1, 2]]
  120. batch_experts = [
  121. [hivemind.RemoteExpert(uid=f'expert.{ii[batch_i][expert_i]}.{jj[batch_i][expert_i]}', endpoint="[::]:1337")
  122. for expert_i in range(len(ii[batch_i]))]
  123. for batch_i in range(len(ii))
  124. ] # note: these experts do not exists on server, we use them only to test moe compute_expert_scores
  125. logits = moe.compute_expert_scores([gx, gy], batch_experts)
  126. torch.softmax(logits, dim=-1).norm(dim=-1).mean().backward()
  127. assert gx.grad.norm().item() > 0 and gy.grad.norm().item(), "compute_expert_scores didn't backprop"
  128. for batch_i in range(len(ii)):
  129. for expert_i in range(len(ii[batch_i])):
  130. assert torch.allclose(logits[batch_i, expert_i],
  131. gx[batch_i, ii[batch_i][expert_i]] + gy[batch_i, jj[batch_i][expert_i]]), \
  132. "compute_expert_scores returned incorrect score"
  133. finally:
  134. dht.shutdown()