test_dht_experts.py 6.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130
  1. import random
  2. import numpy as np
  3. import pytest
  4. import hivemind
  5. from hivemind import LOCALHOST, UidEndpoint
  6. def test_store_get_experts():
  7. peers = [hivemind.DHT(start=True)]
  8. for i in range(10):
  9. neighbors_i = [f'{LOCALHOST}:{node.port}' for node in random.sample(peers, min(3, len(peers)))]
  10. peers.append(hivemind.DHT(initial_peers=neighbors_i, start=True))
  11. you: hivemind.dht.DHT = random.choice(peers)
  12. theguyshetoldyounottoworryabout: hivemind.dht.DHT = random.choice(peers)
  13. expert_uids = [f"my_expert.{i}" for i in range(110)]
  14. batch_size = 10
  15. for batch_start in range(0, len(expert_uids), batch_size):
  16. you.declare_experts(expert_uids[batch_start: batch_start + batch_size], 'localhost', 1234)
  17. found = theguyshetoldyounottoworryabout.get_experts(random.sample(expert_uids, 5) + ['foo', 'bar'])
  18. assert all(res is not None for res in found[:-2]), "Could not find some existing experts"
  19. assert all(res is None for res in found[-2:]), "Found non-existing experts"
  20. that_guys_expert, that_guys_port = "my_other_expert.1337", random.randint(1000, 9999)
  21. theguyshetoldyounottoworryabout.declare_experts([that_guys_expert], f'that_host:{that_guys_port}')
  22. you_notfound, you_found = you.get_experts(['foobar', that_guys_expert])
  23. assert isinstance(you_found, hivemind.RemoteExpert)
  24. assert you_found.endpoint == f'that_host:{that_guys_port}'
  25. for peer in peers:
  26. peer.shutdown()
  27. def test_beam_search(dht_size=20, total_experts=128, batch_size=32, initial_peers=3, beam_size=4, parallel_rpc=256,
  28. grid_dims=(32, 32, 32)):
  29. dht = []
  30. for i in range(dht_size):
  31. neighbors_i = [f'{LOCALHOST}:{node.port}' for node in random.sample(dht, min(initial_peers, len(dht)))]
  32. dht.append(hivemind.DHT(start=True, expiration=999999, initial_peers=neighbors_i, parallel_rpc=parallel_rpc))
  33. real_experts = sorted({
  34. 'expert.' + '.'.join([str(random.randint(0, dim - 1)) for dim in grid_dims])
  35. for _ in range(total_experts)
  36. })
  37. for batch_start in range(0, len(real_experts), batch_size):
  38. random.choice(dht).declare_experts(
  39. real_experts[batch_start: batch_start + batch_size], wait=True,
  40. endpoint=f"host{batch_start // batch_size}:{random.randint(0, 65536)}")
  41. neighbors_i = [f'{LOCALHOST}:{node.port}' for node in random.sample(dht, min(initial_peers, len(dht)))]
  42. you = hivemind.DHT(start=True, expiration=999999, initial_peers=neighbors_i, parallel_rpc=parallel_rpc)
  43. for i in range(50):
  44. topk_experts = you.find_best_experts('expert.', [np.random.randn(dim) for dim in grid_dims], beam_size=beam_size)
  45. assert all(isinstance(e, hivemind.RemoteExpert) for e in topk_experts)
  46. assert len(topk_experts) == beam_size
  47. for i in range(10):
  48. batch_experts = you.batch_find_best_experts('expert.', [np.random.randn(batch_size, dim) for dim in grid_dims],
  49. beam_size=beam_size)
  50. assert isinstance(batch_experts, list) and len(batch_experts) == batch_size
  51. assert all(isinstance(e, hivemind.RemoteExpert) for experts in batch_experts for e in experts)
  52. assert all(len(experts) == beam_size for experts in batch_experts)
  53. def test_dht_single_node():
  54. node = hivemind.DHT(start=True, expiration=999)
  55. assert all(node.declare_experts(['expert.1', 'expert.2', 'expert.3'], f"{hivemind.LOCALHOST}:1337").values())
  56. assert len(node.declare_experts(["ffn.1", "ffn.2"], endpoint="that_place")) == 4
  57. assert len(node.declare_experts(['e.1.2.3', 'e.1.2.5', 'e.2.0'], f"{hivemind.LOCALHOST}:42")) == 7
  58. for expert in node.get_experts(['expert.3', 'expert.2']):
  59. assert expert.endpoint == f"{hivemind.LOCALHOST}:1337"
  60. assert all(node.declare_experts(['expert.5', 'expert.2'], f"{hivemind.LOCALHOST}:1337").values())
  61. found_experts = node.find_best_experts('expert.', [(0., 1., 2., 3., 4., 5., 6., 7., 8.)], beam_size=2)
  62. assert len(found_experts) == 2 and [expert.uid for expert in found_experts] == ['expert.5', 'expert.3']
  63. successors = node.get_active_successors(['e.1.2.', 'e.2.', 'e.4.5.'])
  64. assert len(successors['e.1.2.']) == 2
  65. assert successors['e.1.2.'][3] == UidEndpoint('e.1.2.3', f'{LOCALHOST}:42')
  66. assert successors['e.1.2.'][5] == UidEndpoint('e.1.2.5', f'{LOCALHOST}:42')
  67. assert len(successors['e.2.']) == 1 and successors['e.2.'][0] == UidEndpoint('e.2.0', f'{LOCALHOST}:42')
  68. assert successors['e.4.5.'] == {}
  69. initial_beam = node.get_initial_beam('expert.', (3, 2, 1, 0, -1, -2, -3), beam_size=3)
  70. assert len(initial_beam) == 3
  71. assert initial_beam[0][:2] == (2.0, 'expert.1.')
  72. assert initial_beam[1][:2] == (1.0, 'expert.2.')
  73. assert initial_beam[2][:2] == (0.0, 'expert.3.')
  74. with pytest.raises(AssertionError):
  75. node.find_best_experts('expert', [(0., 1., 2., 3., 4., 5., 6., 7., 8.)], beam_size=2)
  76. with pytest.raises(AssertionError):
  77. node.find_best_experts('expert.1', [(0., 1., 2., 3., 4., 5., 6., 7., 8.)], beam_size=2)
  78. with pytest.raises(AssertionError):
  79. node.get_active_successors(['e.1.2.', 'e.2', 'e.4.5.'])
  80. with pytest.raises(AssertionError):
  81. node.get_initial_beam('expert', (3, 2, 1, 0, -1, -2, -3), beam_size=3)
  82. def test_uid_patterns():
  83. valid_experts = ["expert.1", "expert.0", "expert.0.0.1", "expert.1337", "ffn.12.34.56.78.90",
  84. "transformer.3.2.1.0", "transformer_encoder.2", "transformer::encoder.2", "T®@nsf0rmE®🤗.321",
  85. "🤗.321", "0.1.2", "00.1.2", "7070.3.2.1.0", "block2.1.23", "LAYER.1.0.1"]
  86. valid_prefixes = ["expert.", "e.1.", "e.2.", "e.1.2.3.", "ololo.123.456.789.10."]
  87. valid_prefixes.extend([f"{uid}." for uid in valid_experts])
  88. valid_prefixes.extend([hivemind.split_uid(uid)[0] for uid in valid_experts])
  89. for uid in valid_experts:
  90. assert hivemind.is_valid_uid(uid), f"UID {uid} is valid, but was perceived as invalid"
  91. for pfx in valid_prefixes:
  92. assert hivemind.is_valid_prefix(pfx), f"Prefix {pfx} is valid, but was perceived as invalid"
  93. invalid = ["", ".", "expert.-1", "xxx.a", "expert.1x", "expert_ffn.1.abc1", "some.123.01", "expert.123.01",
  94. "e1", "e..1", "e", "e.1.2.3..4", "ffn.1..1", ".123", ".1.2.3.", ".expert", "transformer.encoder.2",
  95. "T®@nsf0rmE®.🤗.321", "layer::123", "expert.0.1.2.suffix", "0.1.2.suffix", "expert.1 something",
  96. "expert.1\n", "expert.1\n2", "expert.1 ", "expert.1\nexpert.2", "'expert.1'", '"expert.1"']
  97. invalid_experts = invalid + valid_prefixes + ["0", "123456"]
  98. invalid_prefixes = invalid + valid_experts + ["expert", ".🤗", ".expert"]
  99. for uid in invalid_experts:
  100. assert not hivemind.is_valid_uid(uid), f"UID {uid} is not valid, but was perceived as valid"
  101. for pfx in invalid_prefixes:
  102. assert not hivemind.is_valid_prefix(pfx), f"Prefix {pfx} is not valid, but was perceived as valid"