12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576 |
- import argparse
- import resource
- import os
- import sys
- import torch
- import tesseract
- sys.path.append(os.path.dirname(__file__) + '/../tests')
- from test_utils import layers
- from tesseract import find_open_port
- if __name__ == "__main__":
- parser = argparse.ArgumentParser()
- parser.add_argument('--expert_cls', type=str, default='ffn', required=False)
- parser.add_argument('--num_experts', type=int, default=1, required=False)
- parser.add_argument('--num_handlers', type=int, default=None, required=False)
- parser.add_argument('--hidden_dim', type=int, default=1024, required=False)
- parser.add_argument('--max_batch_size', type=int, default=16384, required=False)
- parser.add_argument('--expert_prefix', type=str, default='expert', required=False)
- parser.add_argument('--expert_offset', type=int, default=0, required=False)
- parser.add_argument('--device', type=str, default=None, required=False)
- parser.add_argument('--port', type=int, default=None, required=False)
- parser.add_argument('--host', type=str, default='0.0.0.0', required=False)
- parser.add_argument('--no_network', action='store_true')
- parser.add_argument('--no_optimizer', action='store_true')
- parser.add_argument('--initial_peers', type=str, default="[]", required=False)
- parser.add_argument('--network_port', type=int, default=None, required=False)
- parser.add_argument('--lifetime_seconds', type=int, default=None, required=False)
- parser.add_argument('--increase_file_limit', action='store_true')
- args = parser.parse_args()
- if args.increase_file_limit:
- soft, hard = resource.getrlimit(resource.RLIMIT_NOFILE)
- try:
- print("Setting open file limit to soft={}, hard={}".format(max(soft, 2 ** 15), max(hard, 2 ** 15)))
- resource.setrlimit(resource.RLIMIT_NOFILE, (max(soft, 2 ** 15), max(hard, 2 ** 15)))
- except:
- print("Could not increase open file limit, currently at soft={}, hard={}".format(soft, hard))
- assert args.expert_cls in layers.name_to_block
- args.num_handlers = args.num_handlers or args.num_experts * 8
- device = args.device or ('cuda' if torch.cuda.is_available() else 'cpu')
- # initialize network
- network = None
- if not args.no_network:
- initial_peers = eval(args.initial_peers)
- print("Parsed initial peers:", initial_peers)
- network = tesseract.TesseractNetwork(*initial_peers, port=args.network_port or find_open_port(), start=True)
- print(f"Running network node on port {network.port}")
- # initialize experts
- experts = {}
- for i in range(args.num_experts):
- expert = torch.jit.script(layers.name_to_block[args.expert_cls](args.hidden_dim))
- opt = torch.optim.SGD(expert.parameters(), 0.0) if args.no_optimizer else torch.optim.Adam(expert.parameters())
- expert_uid = f'{args.expert_prefix}.{i + args.expert_offset}'
- experts[expert_uid] = tesseract.ExpertBackend(name=expert_uid, expert=expert, opt=opt,
- args_schema=(tesseract.BatchTensorProto(args.hidden_dim),),
- outputs_schema=tesseract.BatchTensorProto(args.hidden_dim),
- max_batch_size=args.max_batch_size,
- )
- # start server
- server = tesseract.TesseractServer(
- network, experts, addr=args.host, port=args.port or find_open_port(),
- conn_handler_processes=args.num_handlers, device=device)
- try:
- server.run_in_background(await_ready=True)
- print(f"Running server at {server.addr}:{server.port}")
- print(f"Active experts of type {args.expert_cls}: {list(experts.keys())}")
- server.join(timeout=args.lifetime_seconds)
- finally:
- server.shutdown()
|