optim.py 5.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151
  1. import math
  2. import torch
  3. from torch.optim.optimizer import Optimizer
  4. from .types import Betas2, OptFloat, OptLossClosure, Params
  5. __all__ = ('Lamb',)
  6. class Lamb(Optimizer):
  7. r"""Implements Lamb algorithm.
  8. It has been proposed in `Large Batch Optimization for Deep Learning:
  9. Training BERT in 76 minutes`__.
  10. Arguments:
  11. params: iterable of parameters to optimize or dicts defining
  12. parameter groups
  13. lr: learning rate (default: 1e-3)
  14. betas: coefficients used for computing
  15. running averages of gradient and its square (default: (0.9, 0.999))
  16. eps: term added to the denominator to improve
  17. numerical stability (default: 1e-8)
  18. weight_decay: weight decay (L2 penalty) (default: 0)
  19. clamp_value: clamp weight_norm in (0,clamp_value) (default: 10)
  20. set to a high value to avoid it (e.g 10e3)
  21. adam: always use trust ratio = 1, which turns this
  22. into Adam. Useful for comparison purposes. (default: False)
  23. debias: debias adam by (1 - beta**step) (default: False)
  24. Example:
  25. >>> import torch_optimizer as optim
  26. >>> optimizer = optim.Lamb(model.parameters(), lr=0.1)
  27. >>> optimizer.zero_grad()
  28. >>> loss_fn(model(input), target).backward()
  29. >>> optimizer.step()
  30. __ https://arxiv.org/abs/1904.00962
  31. Note:
  32. Reference code: https://github.com/cybertronai/pytorch-lamb
  33. """
  34. def __init__(
  35. self,
  36. params: Params,
  37. lr: float = 1e-3,
  38. betas: Betas2 = (0.9, 0.999),
  39. eps: float = 1e-6,
  40. weight_decay: float = 0,
  41. clamp_value: float = 10,
  42. adam: bool = False,
  43. debias: bool = False,
  44. ) -> None:
  45. if lr <= 0.0:
  46. raise ValueError('Invalid learning rate: {}'.format(lr))
  47. if eps < 0.0:
  48. raise ValueError('Invalid epsilon value: {}'.format(eps))
  49. if not 0.0 <= betas[0] < 1.0:
  50. raise ValueError(
  51. 'Invalid beta parameter at index 0: {}'.format(betas[0])
  52. )
  53. if not 0.0 <= betas[1] < 1.0:
  54. raise ValueError(
  55. 'Invalid beta parameter at index 1: {}'.format(betas[1])
  56. )
  57. if weight_decay < 0:
  58. raise ValueError(
  59. 'Invalid weight_decay value: {}'.format(weight_decay)
  60. )
  61. if clamp_value < 0.0:
  62. raise ValueError('Invalid clamp value: {}'.format(clamp_value))
  63. defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay)
  64. self.clamp_value = clamp_value
  65. self.adam = adam
  66. self.debias = debias
  67. super(Lamb, self).__init__(params, defaults)
  68. def step(self, closure: OptLossClosure = None) -> OptFloat:
  69. r"""Performs a single optimization step.
  70. Arguments:
  71. closure: A closure that reevaluates the model and returns the loss.
  72. """
  73. loss = None
  74. if closure is not None:
  75. loss = closure()
  76. for group in self.param_groups:
  77. for p in group['params']:
  78. if p.grad is None:
  79. continue
  80. grad = p.grad.data
  81. if grad.is_sparse:
  82. msg = (
  83. 'Lamb does not support sparse gradients, '
  84. 'please consider SparseAdam instead'
  85. )
  86. raise RuntimeError(msg)
  87. state = self.state[p]
  88. # State initialization
  89. if len(state) == 0:
  90. state['step'] = 0
  91. # Exponential moving average of gradient values
  92. state['exp_avg'] = torch.zeros_like(
  93. p, )
  94. # Exponential moving average of squared gradient values
  95. state['exp_avg_sq'] = torch.zeros_like(p)
  96. exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
  97. beta1, beta2 = group['betas']
  98. state['step'] += 1
  99. # Decay the first and second moment running average coefficient
  100. # m_t
  101. exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1)
  102. # v_t
  103. exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)
  104. # Paper v3 does not use debiasing.
  105. if self.debias:
  106. bias_correction = math.sqrt(1 - beta2 ** state['step'])
  107. bias_correction /= 1 - beta1 ** state['step']
  108. else:
  109. bias_correction = 1
  110. # Apply bias to lr to avoid broadcast.
  111. step_size = group['lr'] * bias_correction
  112. weight_norm = torch.norm(p.data).clamp(0, self.clamp_value)
  113. adam_step = exp_avg / exp_avg_sq.sqrt().add(group['eps'])
  114. adam_step.add_(p.data, alpha=group['weight_decay'])
  115. adam_norm = torch.norm(adam_step).clamp_min(0.001)
  116. trust_ratio = weight_norm / adam_norm
  117. state['weight_norm'] = weight_norm
  118. state['adam_norm'] = adam_norm
  119. state['trust_ratio'] = trust_ratio
  120. if self.adam:
  121. trust_ratio = 1
  122. p.data.add_(adam_step, alpha=-step_size * trust_ratio)
  123. return loss