12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182 |
- # Copyright 2020 The HuggingFace Team. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """
- A simple launcher script for TPU training
- Inspired by https://github.com/pytorch/pytorch/blob/master/torch/distributed/launch.py
- ::
- >>> python xla_spawn.py --num_cores=NUM_CORES_YOU_HAVE
- YOUR_TRAINING_SCRIPT.py (--arg1 --arg2 --arg3 and all other
- arguments of your training script)
- """
- import importlib
- import sys
- from argparse import REMAINDER, ArgumentParser
- from pathlib import Path
- import torch_xla.distributed.xla_multiprocessing as xmp
- def parse_args():
- """
- Helper function parsing the command line options
- @retval ArgumentParser
- """
- parser = ArgumentParser(
- description=(
- "PyTorch TPU distributed training launch "
- "helper utility that will spawn up "
- "multiple distributed processes"
- )
- )
- # Optional arguments for the launch helper
- parser.add_argument("--num_cores", type=int, default=1, help="Number of TPU cores to use (1 or 8).")
- # positional
- parser.add_argument(
- "training_script",
- type=str,
- help=(
- "The full path to the single TPU training "
- "program/script to be launched in parallel, "
- "followed by all the arguments for the "
- "training script"
- ),
- )
- # rest from the training program
- parser.add_argument("training_script_args", nargs=REMAINDER)
- return parser.parse_args()
- def main():
- args = parse_args()
- # Import training_script as a module.
- script_fpath = Path(args.training_script)
- sys.path.append(str(script_fpath.parent.resolve()))
- mod_name = script_fpath.stem
- mod = importlib.import_module(mod_name)
- # Patch sys.argv
- sys.argv = [args.training_script] + args.training_script_args + ["--tpu_num_cores", str(args.num_cores)]
- xmp.spawn(mod._mp_fn, args=(), nprocs=args.num_cores)
- if __name__ == "__main__":
- main()
|