test_optimizer.py 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401
  1. import ctypes
  2. import multiprocessing as mp
  3. import time
  4. from functools import partial
  5. import numpy as np
  6. import pytest
  7. import torch
  8. import torch.nn as nn
  9. import torch.nn.functional as F
  10. import hivemind
  11. from hivemind.averaging.control import AveragingStage
  12. from hivemind.optim.grad_averager import GradientAverager
  13. from hivemind.optim.optimizer import Optimizer
  14. from hivemind.optim.progress_tracker import ProgressTracker
  15. from hivemind.optim.state_averager import TrainingStateAverager
  16. from hivemind.utils.crypto import RSAPrivateKey
  17. @pytest.mark.forked
  18. def test_grad_averager():
  19. dht1 = hivemind.DHT(start=True)
  20. model1 = nn.ParameterDict({"w": nn.Parameter(torch.zeros(3))})
  21. averager1 = GradientAverager(
  22. model1.parameters(), dht=dht1, prefix="test", target_group_size=2, reuse_grad_buffers=False, start=True
  23. )
  24. dht2 = hivemind.DHT(start=True, initial_peers=dht1.get_visible_maddrs())
  25. model2 = nn.ParameterDict({"w": nn.Parameter(torch.zeros(3))})
  26. averager2 = GradientAverager(
  27. model2.parameters(), dht=dht2, prefix="test", target_group_size=2, reuse_grad_buffers=True, start=True
  28. )
  29. control1 = averager1.schedule_step(hivemind.get_dht_time() + 5)
  30. control2 = averager2.schedule_step(hivemind.get_dht_time() + 5)
  31. for i in range(10):
  32. time.sleep(0.1)
  33. if i % 3 == 0:
  34. loss1 = F.mse_loss(model1.w, torch.ones(3))
  35. loss1.backward()
  36. averager1.accumulate_grads_(batch_size=2) # total: 4 times * 2 samples = 8
  37. model1.zero_grad()
  38. else:
  39. loss2 = F.mse_loss(model2.w, -torch.ones(3))
  40. loss2.backward()
  41. averager2.accumulate_grads_(batch_size=3) # total: 6 times * 3 samples = 18
  42. # note: we do not call zero grad here because reuse_grad_buffers=True
  43. assert control1.stage == control2.stage == AveragingStage.AWAITING_TRIGGER
  44. peer1_samples, peer1_times, peer2_samples, peer2_times = 8, 4, 18, 6
  45. assert averager1.local_samples_accumulated == peer1_samples and averager1.local_times_accumulated == peer1_times
  46. ref_grads1 = torch.full((3,), -2 * 1 / 3 * averager1.local_times_accumulated)
  47. assert torch.allclose(next(averager1._grad_accumulators()), ref_grads1)
  48. assert averager2.local_samples_accumulated == peer2_samples and averager2.local_times_accumulated == peer2_times
  49. ref_grads2 = torch.full((3,), 2 * 1 / 3 * averager2.local_times_accumulated)
  50. assert torch.allclose(next(averager2._grad_accumulators()), ref_grads2)
  51. averager1.step(control=control1, wait=False)
  52. averager2.step(control=control2, wait=False)
  53. for step in (control1, control2):
  54. step.result() # wait for all-reduce to finish
  55. peer1_weight = peer1_samples / (peer1_samples + peer2_samples)
  56. peer2_weight = peer2_samples / (peer1_samples + peer2_samples)
  57. ref_average = peer1_weight * (ref_grads1 / peer1_times) + peer2_weight * (ref_grads2 / peer2_times)
  58. with averager1.use_averaged_gradients():
  59. assert torch.allclose(model1.w.grad, ref_average)
  60. with averager2.use_averaged_gradients():
  61. assert torch.allclose(model2.w.grad, ref_average)
  62. # after no longer use_averaged_gradients
  63. assert not torch.allclose(model1.w.grad, ref_average)
  64. assert not torch.allclose(model2.w.grad, ref_average)
  65. @pytest.mark.forked
  66. @pytest.mark.parametrize(
  67. "offload_optimizer, reuse_tensors, sync_epoch_when_averaging",
  68. [(False, False, False), (True, True, False), (True, False, False), (False, True, True), (True, False, True)],
  69. )
  70. def test_state_averager(offload_optimizer: bool, reuse_tensors: bool, sync_epoch_when_averaging: bool):
  71. dht1 = hivemind.DHT(start=True)
  72. dht2 = hivemind.DHT(initial_peers=dht1.get_visible_maddrs(), start=True)
  73. torch.manual_seed(1337)
  74. torch.use_deterministic_algorithms(True)
  75. # note: use_deterministic_algorithms does not affect further tests because this test is forked
  76. model1 = nn.Linear(2, 3)
  77. model2 = nn.Linear(2, 3)
  78. extras1 = (torch.randn(2, 2), -torch.rand(1))
  79. extras2 = (-torch.randn(2, 2), torch.rand(1))
  80. common_kwargs = dict(
  81. optimizer=partial(torch.optim.Adam, lr=0.1, betas=(0.9, 0.9)),
  82. scheduler=partial(torch.optim.lr_scheduler.LambdaLR, lr_lambda=lambda t: 1.0 / max(1, t)),
  83. sync_epoch_when_averaging=sync_epoch_when_averaging,
  84. average_opt_statistics=("exp_avg_sq",),
  85. offload_optimizer=offload_optimizer,
  86. reuse_tensors=reuse_tensors,
  87. target_group_size=2,
  88. prefix="my_exp",
  89. )
  90. avgr1 = TrainingStateAverager(
  91. dht=dht1, params=model1.parameters(), extra_tensors=extras1, start=True, **common_kwargs
  92. )
  93. avgr2 = TrainingStateAverager(
  94. dht=dht2, params=model2.parameters(), extra_tensors=extras2, start=True, **common_kwargs
  95. )
  96. x = torch.ones(2)
  97. for step in range(20):
  98. F.mse_loss(model1(x), torch.ones(3)).mul(2).backward()
  99. avgr1.step(optimizer_step=True, zero_grad=True, averaging_round=(step == 10), delay_averaging=True)
  100. F.mse_loss(model2(x), -torch.ones(3)).backward()
  101. avgr2.step(optimizer_step=True, zero_grad=True, averaging_round=(step == 10), delay_averaging=False)
  102. assert torch.all(model1.weight.grad == 0) and torch.all(model2.weight.grad == 0), "zero grad did not trigger"
  103. assert model1(x).mean() > 0.5 and model2(x).mean() < -0.5, "models did not train properly"
  104. assert torch.allclose(extras1[0], extras2[0]), "first extra tensors were not averaged"
  105. assert torch.allclose(extras1[1], extras2[1]), "second extra tensors were not averaged"
  106. stats1 = avgr1.optimizer.state_dict()["state"][0]["exp_avg_sq"].clone()
  107. stats2 = avgr2.optimizer.state_dict()["state"][0]["exp_avg_sq"].clone()
  108. assert not torch.allclose(stats1, stats2)
  109. avgr1.step(increment_epoch=True)
  110. avgr1.step(increment_epoch=True, averaging_round=True, delay_averaging=True)
  111. avgr2.step(increment_epoch=True, averaging_round=True, delay_averaging=True)
  112. avgr1.step(wait_for_delayed_updates=True)
  113. avgr2.step(wait_for_delayed_updates=True)
  114. assert torch.allclose(model1(x), model2(x)), "model parameters were not averaged correctly"
  115. assert torch.allclose(avgr1.optimizer.state_dict()["state"][0]["exp_avg_sq"], (stats1 + stats2) / 2)
  116. assert torch.allclose(avgr2.optimizer.state_dict()["state"][0]["exp_avg_sq"], (stats1 + stats2) / 2)
  117. assert avgr1.local_epoch == 2
  118. assert avgr2.local_epoch == (2 if sync_epoch_when_averaging else 1)
  119. @pytest.mark.forked
  120. @pytest.mark.parametrize("dpu", [True, False])
  121. def test_load_state_from_peers(dpu: bool):
  122. dht1 = hivemind.DHT(start=True)
  123. dht2 = hivemind.DHT(initial_peers=dht1.get_visible_maddrs(), start=True)
  124. model1 = nn.Linear(2, 3)
  125. model2 = nn.Linear(2, 3)
  126. extras1 = (torch.randn(2, 2), -torch.rand(1))
  127. extras2 = (-torch.randn(2, 2), torch.rand(1))
  128. common_kwargs = dict(
  129. optimizer=partial(torch.optim.SGD, lr=0.1),
  130. scheduler=partial(torch.optim.lr_scheduler.LambdaLR, lr_lambda=lambda t: 1.0 / max(1, t)),
  131. offload_optimizer=dpu,
  132. reuse_tensors=dpu,
  133. target_group_size=2,
  134. prefix="my_exp",
  135. )
  136. avgr1 = TrainingStateAverager(
  137. dht=dht1,
  138. params=model1.parameters(),
  139. allow_state_sharing=False,
  140. start=True,
  141. extra_tensors=extras1,
  142. **common_kwargs,
  143. )
  144. avgr2 = TrainingStateAverager(
  145. dht=dht2, params=model2.parameters(), start=True, extra_tensors=extras2, **common_kwargs
  146. )
  147. avgr2.local_epoch = 1337
  148. model2.weight.data[...] = 42
  149. extras2[0][:] = 9999
  150. time.sleep(0.1)
  151. avgr1.load_state_from_peers()
  152. assert avgr1.local_epoch == 1337
  153. assert torch.all(model1.weight == 42).item()
  154. assert np.allclose(avgr1.optimizer.param_groups[0]["lr"], 0.1 / 1337)
  155. assert torch.all(extras1[0] == extras2[0]).item() and torch.all(extras1[0] == extras2[0]).item()
  156. assert torch.all(extras1[0] == 9999).item()
  157. @pytest.mark.forked
  158. def test_progress_tracker():
  159. # note to a curious reader: no, you cannot reduce the timings without compromising realism or stability
  160. prefix = "my_exp"
  161. target_batch_size = 256
  162. dht_root = hivemind.DHT(start=True)
  163. barrier = mp.Barrier(parties=5)
  164. delayed_start_evt = mp.Event()
  165. finished_evt = mp.Event()
  166. emas = mp.Array(ctypes.c_double, 5)
  167. def run_worker(index: int, batch_size: int, period: float, **kwargs):
  168. dht = hivemind.DHT(initial_peers=dht_root.get_visible_maddrs(), start=True)
  169. tracker = ProgressTracker(
  170. dht,
  171. prefix,
  172. target_batch_size,
  173. start=True,
  174. min_refresh_period=0.1,
  175. default_refresh_period=0.2,
  176. max_refresh_period=0.5,
  177. private_key=RSAPrivateKey(),
  178. **kwargs,
  179. )
  180. barrier.wait()
  181. if index == 4:
  182. delayed_start_evt.wait()
  183. local_epoch = 2 if index == 4 else 0
  184. samples_accumulated = 0
  185. while True:
  186. time.sleep(period)
  187. if finished_evt.is_set():
  188. break
  189. samples_accumulated += batch_size
  190. tracker.report_local_progress(local_epoch, samples_accumulated)
  191. if tracker.ready_to_update_epoch:
  192. if index == 4 and local_epoch >= 4:
  193. time.sleep(0.5)
  194. break
  195. with tracker.pause_updates():
  196. local_epoch = tracker.update_epoch(local_epoch + 1)
  197. samples_accumulated = 0
  198. emas[index] = tracker.performance_ema.samples_per_second
  199. tracker.shutdown()
  200. dht.shutdown()
  201. workers = [
  202. mp.Process(target=run_worker, kwargs=dict(index=1, batch_size=12, period=0.6)),
  203. mp.Process(target=run_worker, kwargs=dict(index=2, batch_size=16, period=0.5)),
  204. mp.Process(target=run_worker, kwargs=dict(index=3, batch_size=24, period=0.4)),
  205. mp.Process(target=run_worker, kwargs=dict(index=4, batch_size=64, period=0.4)),
  206. ]
  207. for worker in workers:
  208. worker.start()
  209. tracker = ProgressTracker(
  210. dht_root,
  211. prefix,
  212. target_batch_size,
  213. start=True,
  214. min_refresh_period=0.1,
  215. default_refresh_period=0.2,
  216. max_refresh_period=0.5,
  217. )
  218. barrier.wait()
  219. local_epoch = 0
  220. last_timestamp = hivemind.get_dht_time()
  221. step_time_deltas = []
  222. while local_epoch < 6:
  223. time.sleep(0.1)
  224. if tracker.ready_to_update_epoch:
  225. with tracker.pause_updates():
  226. local_epoch = tracker.update_epoch(local_epoch + 1)
  227. time_delta = hivemind.get_dht_time() - last_timestamp
  228. if local_epoch == 2:
  229. delayed_start_evt.set()
  230. last_timestamp = hivemind.get_dht_time()
  231. step_time_deltas.append(time_delta)
  232. finished_evt.set()
  233. for worker in workers:
  234. worker.join()
  235. tracker.shutdown()
  236. dht_root.shutdown()
  237. assert not tracker.is_alive()
  238. mean_step_time = sum(step_time_deltas) / len(step_time_deltas)
  239. for i in (0, 1, 5): # Without the 4th worker (the fastest one)
  240. assert 1.05 * mean_step_time < step_time_deltas[i] < 2.0 * mean_step_time
  241. for i in (2, 3, 4): # With the 4th worker
  242. assert 0.5 * mean_step_time < step_time_deltas[i] < 0.95 * mean_step_time
  243. assert emas[1] < emas[2] < emas[3] < emas[4]
  244. assert tracker.performance_ema.samples_per_second < 1e-9
  245. @pytest.mark.forked
  246. def test_optimizer(
  247. num_peers: int = 1,
  248. num_clients: int = 0,
  249. target_batch_size: int = 32,
  250. total_epochs: int = 3,
  251. reuse_grad_buffers: bool = True,
  252. delay_grad_averaging: bool = True,
  253. delay_optimizer_step: bool = True,
  254. average_state_every: int = 1,
  255. ):
  256. dht = hivemind.DHT(start=True)
  257. features = torch.randn(100, 5)
  258. targets = features @ torch.randn(5, 1)
  259. optimizer = None
  260. total_samples_accumulated = mp.Value(ctypes.c_int32, 0)
  261. def run_trainer(batch_size: int, batch_time: float, client_mode: bool):
  262. nonlocal optimizer
  263. model = nn.Linear(5, 1)
  264. assert isinstance(model, torch.nn.Module), "model_arch must evaluate to a pytorch module"
  265. optimizer = Optimizer(
  266. run_id="test_run",
  267. target_batch_size=target_batch_size,
  268. batch_size_per_step=batch_size,
  269. params=model.parameters(),
  270. optimizer=partial(torch.optim.SGD, lr=0.1),
  271. scheduler=partial(torch.optim.lr_scheduler.StepLR, gamma=0.5, step_size=1),
  272. dht=hivemind.DHT(initial_peers=dht.get_visible_maddrs(), client_mode=client_mode, start=True),
  273. tracker_opts=dict(private_key=RSAPrivateKey(), max_refresh_period=1.0),
  274. averager_opts=dict(request_timeout=0.5),
  275. matchmaking_time=1.0,
  276. averaging_timeout=5.0,
  277. reuse_grad_buffers=reuse_grad_buffers,
  278. delay_grad_averaging=delay_grad_averaging,
  279. delay_optimizer_step=delay_optimizer_step,
  280. average_state_every=average_state_every,
  281. client_mode=client_mode,
  282. verbose=False,
  283. )
  284. optimizer.load_state_from_peers()
  285. prev_time = time.perf_counter()
  286. while optimizer.local_epoch < total_epochs:
  287. time.sleep(max(0.0, prev_time + batch_time - time.perf_counter()))
  288. batch = torch.randint(0, len(features), (batch_size,))
  289. loss = F.mse_loss(model(features[batch]), targets[batch])
  290. loss.backward()
  291. optimizer.step()
  292. total_samples_accumulated.value += batch_size
  293. if not reuse_grad_buffers:
  294. optimizer.zero_grad()
  295. prev_time = time.perf_counter()
  296. time.sleep(1.0)
  297. optimizer.shutdown()
  298. return optimizer
  299. peers = []
  300. for index in range(num_peers):
  301. peers.append(
  302. mp.Process(
  303. target=run_trainer,
  304. name=f"trainer-{index}",
  305. kwargs=dict(
  306. batch_size=4 + index,
  307. batch_time=0.3 + 0.2 * index,
  308. client_mode=(index >= num_peers - num_clients),
  309. ),
  310. )
  311. )
  312. for peer in peers[1:]:
  313. peer.start()
  314. peers[0].run()
  315. for peer in peers[1:]:
  316. peer.join()
  317. assert isinstance(optimizer, Optimizer)
  318. assert optimizer.local_epoch == optimizer.tracker.global_epoch == total_epochs
  319. expected_samples_accumulated = target_batch_size * total_epochs
  320. assert expected_samples_accumulated <= total_samples_accumulated.value <= expected_samples_accumulated * 1.2
  321. assert 4 / 0.3 * 0.8 <= optimizer.tracker.performance_ema.samples_per_second <= 4 / 0.3 * 1.2
  322. assert not optimizer.state_averager.is_alive()
  323. assert not optimizer.grad_averager.is_alive()
  324. assert not optimizer.tracker.is_alive()
  325. assert optimizer.scheduled_grads is None or optimizer.scheduled_grads.done()