12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364 |
- from functools import partial
- import configargparse
- import resource
- import torch
- from hivemind.server import Server
- if __name__ == '__main__':
- # fmt:off
- parser = configargparse.ArgParser(default_config_files=["config.yml"])
- parser.add('-c', '--config', required=False, is_config_file=True, help='config file path')
- parser.add_argument('--listen_on', type=str, default='0.0.0.0:*', required=False,
- help="'localhost' for local connections only, '0.0.0.0' for ipv4 '::' for ipv6")
- parser.add_argument('--num_experts', type=int, default=None, required=False, help="run this many experts")
- parser.add_argument('--expert_pattern', type=str, default=None, required=False, help='all expert uids will follow'
- ' this pattern, e.g. "myexpert.[0:256].[0:1024]" will sample random expert uids'
- ' between myexpert.0.0 and myexpert.255.1023 . Use either num_experts and this or expert_uids')
- parser.add_argument('--expert_uids', type=str, nargs="*", default=None, required=False,
- help="specify the exact list of expert uids to create. Use either this or num_experts"
- " and expert_pattern, not both")
- parser.add_argument('--expert_cls', type=str, default='ffn', required=False,
- help="expert type from test_utils.layers, e.g. 'ffn', 'transformer', 'det_dropout' or 'nop'.")
- parser.add_argument('--hidden_dim', type=int, default=1024, required=False, help='main dimension for expert_cls')
- parser.add_argument('--num_handlers', type=int, default=None, required=False,
- help='server will use this many processes to handle incoming requests')
- parser.add_argument('--max_batch_size', type=int, default=16384, required=False,
- help='total num examples in the same batch will not exceed this value')
- parser.add_argument('--device', type=str, default=None, required=False,
- help='all experts will use this device in torch notation; default: cuda if available else cpu')
- parser.add_argument('--optimizer', type=str, default='adam', required=False, help='adam, sgd or none')
- parser.add_argument('--no_dht', action='store_true', help='if specified, the server will not be attached to a dht')
- parser.add_argument('--initial_peers', type=str, nargs='*', required=False, default=[], help='one or more peers'
- ' that can welcome you to the dht, e.g. 1.2.3.4:1337 192.132.231.4:4321')
- parser.add_argument('--dht_port', type=int, default=None, required=False, help='DHT node will listen on this port')
- parser.add_argument('--increase_file_limit', action='store_true', help='On *nix, this will increase the max number'
- ' of processes a server can spawn before hitting "Too many open files"; Use at your own risk.')
- # fmt:on
- args = vars(parser.parse_args())
- args.pop('config', None)
- optimizer = args.pop('optimizer')
- if optimizer == 'adam':
- Optimizer = torch.optim.Adam
- elif optimizer == 'sgd':
- Optimizer = partial(torch.optim.SGD, lr=0.01)
- elif optimizer == 'none':
- Optimizer = None
- else:
- raise ValueError("Optimizer must be adam, sgd or none")
- if args.pop('increase_file_limit'):
- soft, hard = resource.getrlimit(resource.RLIMIT_NOFILE)
- try:
- print("Setting open file limit to soft={}, hard={}".format(max(soft, 2 ** 15), max(hard, 2 ** 15)))
- resource.setrlimit(resource.RLIMIT_NOFILE, (max(soft, 2 ** 15), max(hard, 2 ** 15)))
- except:
- print("Could not increase open file limit, currently at soft={}, hard={}".format(soft, hard))
- try:
- server = Server.create(**args, Optimizer=Optimizer, start=True, verbose=True)
- server.join()
- finally:
- server.shutdown()
|