run_server.py 3.8 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364
  1. from functools import partial
  2. import configargparse
  3. import resource
  4. import torch
  5. from hivemind.server import Server
  6. if __name__ == '__main__':
  7. # fmt:off
  8. parser = configargparse.ArgParser(default_config_files=["config.yml"])
  9. parser.add('-c', '--config', required=False, is_config_file=True, help='config file path')
  10. parser.add_argument('--listen_on', type=str, default='0.0.0.0:*', required=False,
  11. help="'localhost' for local connections only, '0.0.0.0' for ipv4 '::' for ipv6")
  12. parser.add_argument('--num_experts', type=int, default=None, required=False, help="run this many experts")
  13. parser.add_argument('--expert_pattern', type=str, default=None, required=False, help='all expert uids will follow'
  14. ' this pattern, e.g. "myexpert.[0:256].[0:1024]" will sample random expert uids'
  15. ' between myexpert.0.0 and myexpert.255.1023 . Use either num_experts and this or expert_uids')
  16. parser.add_argument('--expert_uids', type=str, nargs="*", default=None, required=False,
  17. help="specify the exact list of expert uids to create. Use either this or num_experts"
  18. " and expert_pattern, not both")
  19. parser.add_argument('--expert_cls', type=str, default='ffn', required=False,
  20. help="expert type from test_utils.layers, e.g. 'ffn', 'transformer', 'det_dropout' or 'nop'.")
  21. parser.add_argument('--hidden_dim', type=int, default=1024, required=False, help='main dimension for expert_cls')
  22. parser.add_argument('--num_handlers', type=int, default=None, required=False,
  23. help='server will use this many processes to handle incoming requests')
  24. parser.add_argument('--max_batch_size', type=int, default=16384, required=False,
  25. help='total num examples in the same batch will not exceed this value')
  26. parser.add_argument('--device', type=str, default=None, required=False,
  27. help='all experts will use this device in torch notation; default: cuda if available else cpu')
  28. parser.add_argument('--optimizer', type=str, default='adam', required=False, help='adam, sgd or none')
  29. parser.add_argument('--no_dht', action='store_true', help='if specified, the server will not be attached to a dht')
  30. parser.add_argument('--initial_peers', type=str, nargs='*', required=False, default=[], help='one or more peers'
  31. ' that can welcome you to the dht, e.g. 1.2.3.4:1337 192.132.231.4:4321')
  32. parser.add_argument('--dht_port', type=int, default=None, required=False, help='DHT node will listen on this port')
  33. parser.add_argument('--increase_file_limit', action='store_true', help='On *nix, this will increase the max number'
  34. ' of processes a server can spawn before hitting "Too many open files"; Use at your own risk.')
  35. # fmt:on
  36. args = vars(parser.parse_args())
  37. args.pop('config', None)
  38. optimizer = args.pop('optimizer')
  39. if optimizer == 'adam':
  40. Optimizer = torch.optim.Adam
  41. elif optimizer == 'sgd':
  42. Optimizer = partial(torch.optim.SGD, lr=0.01)
  43. elif optimizer == 'none':
  44. Optimizer = None
  45. else:
  46. raise ValueError("Optimizer must be adam, sgd or none")
  47. if args.pop('increase_file_limit'):
  48. soft, hard = resource.getrlimit(resource.RLIMIT_NOFILE)
  49. try:
  50. print("Setting open file limit to soft={}, hard={}".format(max(soft, 2 ** 15), max(hard, 2 ** 15)))
  51. resource.setrlimit(resource.RLIMIT_NOFILE, (max(soft, 2 ** 15), max(hard, 2 ** 15)))
  52. except:
  53. print("Could not increase open file limit, currently at soft={}, hard={}".format(soft, hard))
  54. try:
  55. server = Server.create(**args, Optimizer=Optimizer, start=True, verbose=True)
  56. server.join()
  57. finally:
  58. server.shutdown()