start_server.py 3.5 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273
  1. import argparse
  2. import multiprocessing as mp
  3. import random
  4. import resource
  5. import os
  6. import sys
  7. import time
  8. import torch
  9. sys.path.append(os.path.dirname(__file__) + '/../tests')
  10. from test_utils import layers, find_open_port
  11. import tesseract
  12. if __name__ == "__main__":
  13. parser = argparse.ArgumentParser()
  14. parser.add_argument('--expert_cls', type=str, default='ffn', required=False)
  15. parser.add_argument('--num_experts', type=int, default=1, required=False)
  16. parser.add_argument('--num_handlers', type=int, default=None, required=False)
  17. parser.add_argument('--hidden_dim', type=int, default=1024, required=False)
  18. parser.add_argument('--max_batch_size', type=int, default=16384, required=False)
  19. parser.add_argument('--expert_prefix', type=str, default='expert', required=False)
  20. parser.add_argument('--expert_offset', type=int, default=0, required=False)
  21. parser.add_argument('--device', type=str, default=None, required=False)
  22. parser.add_argument('--port', type=int, default=None, required=False)
  23. parser.add_argument('--host', type=str, default='0.0.0.0', required=False)
  24. parser.add_argument('--no_network', action='store_true')
  25. parser.add_argument('--initial_peers', type=str, default="[]", required=False)
  26. parser.add_argument('--network_port', type=int, default=None, required=False)
  27. parser.add_argument('--increase_file_limit', action='store_true')
  28. args = parser.parse_args()
  29. if args.increase_file_limit:
  30. soft, hard = resource.getrlimit(resource.RLIMIT_NOFILE)
  31. try:
  32. print("Setting open file limit to soft={}, hard={}".format(max(soft, 2 ** 15), max(hard, 2 ** 15)))
  33. resource.setrlimit(resource.RLIMIT_NOFILE, (max(soft, 2 ** 15), max(hard, 2 ** 15)))
  34. except:
  35. print("Could not increase open file limit, currently at soft={}, hard={}".format(soft, hard))
  36. assert args.expert_cls in layers.name_to_block
  37. num_handlers = args.num_handlers or args.num_experts * 8
  38. port = args.port or find_open_port()
  39. network_port = args.network_port or find_open_port()
  40. device = args.device or ('cuda' if torch.cuda.is_available() else 'cpu')
  41. # initialize network
  42. network = None
  43. if not args.no_network:
  44. initial_peers = eval(args.initial_peers)
  45. print("Parsed initial peers:", initial_peers)
  46. network = tesseract.TesseractNetwork(*initial_peers, port=network_port, start=True)
  47. print("Running network node on port {network_port}")
  48. # initialize experts
  49. experts = {}
  50. for i in range(args.num_experts):
  51. expert = torch.jit.script(layers.name_to_block[args.expert_cls](args.hidden_dim))
  52. experts[f'expert{i}'] = tesseract.ExpertBackend(name=f'{args.expert_prefix}.{i + args.expert_offset}',
  53. expert=expert, opt=torch.optim.Adam(expert.parameters()),
  54. args_schema=(tesseract.BatchTensorProto(args.hidden_dim),),
  55. outputs_schema=tesseract.BatchTensorProto(args.hidden_dim),
  56. max_batch_size=args.max_batch_size,
  57. )
  58. # start server
  59. server = tesseract.TesseractServer(network, experts, port=port, conn_handler_processes=num_handlers, device=device)
  60. print("Active expert uids:", sorted(experts))
  61. try:
  62. server.run()
  63. finally:
  64. server.shutdown()