benchmark_averaging.py 4.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120
  1. import argparse
  2. import math
  3. import threading
  4. import time
  5. import torch
  6. import hivemind
  7. from hivemind.proto import runtime_pb2
  8. from hivemind.utils.limits import increase_file_limit
  9. from hivemind.utils.logging import get_logger, use_hivemind_log_handler
  10. use_hivemind_log_handler("in_root_logger")
  11. logger = get_logger(__name__)
  12. def sample_tensors(hid_size, num_layers):
  13. tensors = []
  14. for i in range(num_layers):
  15. tensors.append(torch.randn(hid_size, 3 * hid_size))
  16. tensors.append(torch.randn(3 * hid_size))
  17. tensors.append(torch.randn(3 * hid_size))
  18. tensors.append(torch.randn(hid_size, hid_size))
  19. tensors.append(torch.ones(hid_size))
  20. tensors.append(torch.zeros(hid_size))
  21. tensors.append(torch.randn(hid_size, 4 * hid_size))
  22. tensors.append(torch.randn(4 * hid_size))
  23. tensors.append(torch.ones(4 * hid_size))
  24. tensors.append(torch.randn(2, hid_size, hid_size, 2))
  25. tensors.append(torch.randn(hid_size))
  26. tensors.append(torch.randn(hid_size))
  27. tensors.append(torch.randn(hid_size))
  28. return tuple(tensors)
  29. def benchmark_averaging(
  30. num_peers: int,
  31. target_group_size: int,
  32. num_rounds: int,
  33. averaging_expiration: float,
  34. request_timeout: float,
  35. round_timeout: float,
  36. hid_size: int,
  37. num_layers: int,
  38. spawn_dtime: float,
  39. ):
  40. dht_root = hivemind.DHT(start=True)
  41. initial_peers = dht_root.get_visible_maddrs()
  42. num_groups = 2 ** int(round(math.log2(num_peers / target_group_size)))
  43. nbits = int(round(math.log2(num_groups)))
  44. peer_tensors = [sample_tensors(hid_size, num_layers) for _ in range(num_peers)]
  45. processes = {dht_root}
  46. lock_stats = threading.Lock()
  47. successful_steps = total_steps = 0
  48. def run_averager(index):
  49. nonlocal successful_steps, total_steps, lock_stats
  50. dht = hivemind.DHT(initial_peers=initial_peers, start=True)
  51. initial_bits = bin(index % num_groups)[2:].rjust(nbits, "0")
  52. averager = hivemind.averaging.DecentralizedAverager(
  53. peer_tensors[index],
  54. dht,
  55. prefix="my_tensor",
  56. initial_group_bits=initial_bits,
  57. compression_type=runtime_pb2.CompressionType.FLOAT16,
  58. target_group_size=target_group_size,
  59. averaging_expiration=averaging_expiration,
  60. request_timeout=request_timeout,
  61. start=True,
  62. )
  63. processes.update({dht, averager})
  64. logger.info(
  65. f"Averager {index}: started with peer id {averager.peer_id}, group_bits: {averager.get_group_bits()}"
  66. )
  67. for step in range(num_rounds):
  68. try:
  69. success = averager.step(timeout=round_timeout) is not None
  70. except:
  71. success = False
  72. with lock_stats:
  73. successful_steps += int(success)
  74. total_steps += 1
  75. logger.info(f"Averager {index}: {'finished' if success else 'failed'} step #{step}")
  76. logger.info(f"Averager {index}: done.")
  77. threads = []
  78. for i in range(num_peers):
  79. thread = threading.Thread(target=run_averager, args=[i])
  80. threads.append(thread)
  81. thread.start()
  82. time.sleep(spawn_dtime)
  83. t = time.time()
  84. for thread in threads:
  85. thread.join()
  86. logger.info(f"Benchmark finished in {time.time() - t:.3f} seconds.")
  87. logger.info(f"Success rate: {successful_steps / total_steps} ({successful_steps} out of {total_steps} attempts)")
  88. if __name__ == "__main__":
  89. parser = argparse.ArgumentParser()
  90. parser.add_argument("--num_peers", type=int, default=16, required=False)
  91. parser.add_argument("--target_group_size", type=int, default=4, required=False)
  92. parser.add_argument("--num_rounds", type=int, default=5, required=False)
  93. parser.add_argument("--hid_size", type=int, default=256, required=False)
  94. parser.add_argument("--num_layers", type=int, default=3, required=False)
  95. parser.add_argument("--averaging_expiration", type=float, default=5, required=False)
  96. parser.add_argument("--round_timeout", type=float, default=15, required=False)
  97. parser.add_argument("--request_timeout", type=float, default=1, required=False)
  98. parser.add_argument("--spawn_dtime", type=float, default=0.1, required=False)
  99. parser.add_argument("--increase_file_limit", action="store_true")
  100. args = vars(parser.parse_args())
  101. if args.pop("increase_file_limit", False):
  102. increase_file_limit()
  103. benchmark_averaging(**args)