run_server.py 5.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119
  1. import resource
  2. from contextlib import contextmanager
  3. import multiprocessing as mp
  4. import argparse
  5. import torch
  6. import tesseract
  7. from .layers import name_to_block
  8. def make_dummy_server(host='0.0.0.0', port=None, num_experts=1, expert_cls='ffn', hidden_dim=1024, num_handlers=None,
  9. expert_prefix='expert.', expert_offset=0, max_batch_size=16384, device=None, no_optimizer=False,
  10. no_network=False, initial_peers=(), network_port=None, verbose=True, start=True, **kwargs
  11. ) -> tesseract.TesseractServer:
  12. """ A context manager that creates server in a background thread, awaits .ready on entry and shutdowns on exit """
  13. if verbose and len(kwargs) != 0:
  14. print("Ignored kwargs:", kwargs)
  15. assert expert_cls in name_to_block
  16. num_handlers = num_handlers if num_handlers is not None else num_experts * 8
  17. device = device or ('cuda' if torch.cuda.is_available() else 'cpu')
  18. # initialize network
  19. network = None
  20. if not no_network:
  21. network = tesseract.TesseractNetwork(
  22. *initial_peers, port=network_port or tesseract.find_open_port(), start=True)
  23. if verbose:
  24. print("Parsed initial peers:", initial_peers)
  25. print(f"Running network node on port {network.port}")
  26. # initialize experts
  27. experts = {}
  28. for i in range(num_experts):
  29. expert = torch.jit.script(name_to_block[expert_cls](hidden_dim))
  30. opt = torch.optim.SGD(expert.parameters(), 0.0) if no_optimizer else torch.optim.Adam(expert.parameters())
  31. expert_uid = f'{expert_prefix}{i + expert_offset}'
  32. experts[expert_uid] = tesseract.ExpertBackend(name=expert_uid, expert=expert, opt=opt,
  33. args_schema=(tesseract.BatchTensorProto(hidden_dim),),
  34. outputs_schema=tesseract.BatchTensorProto(hidden_dim),
  35. max_batch_size=max_batch_size,
  36. )
  37. # actually start server
  38. server = tesseract.TesseractServer(
  39. network, experts, addr=host, port=port or tesseract.find_open_port(),
  40. conn_handler_processes=num_handlers, device=device)
  41. if start:
  42. server.run_in_background(await_ready=True)
  43. if verbose:
  44. print(f"Server started at {server.addr}:{server.port}")
  45. print(f"Got {num_experts} active experts of type {expert_cls}: {list(experts.keys())}")
  46. return server
  47. @contextmanager
  48. def background_server(*args, verbose=True, **kwargs):
  49. """ Runs server in a background process and returns a reference to it. """
  50. recv_addr, send_addr = mp.Pipe(duplex=True)
  51. trigger_shutdown = mp.Event()
  52. def server_runner():
  53. try:
  54. server = make_dummy_server(*args, verbose=verbose, start=True, **kwargs)
  55. send_addr.send((server.addr, server.port))
  56. trigger_shutdown.wait()
  57. finally:
  58. if verbose:
  59. print("Shutting down server...")
  60. trigger_shutdown.set() # if server failed internally, set the shutdown trigger anyway
  61. server.shutdown()
  62. if verbose:
  63. print("Server shut down successfully.")
  64. try:
  65. runner = mp.Process(target=server_runner)
  66. runner.start()
  67. yield recv_addr.recv() # yield tuple(hostname, port)
  68. finally:
  69. trigger_shutdown.set()
  70. runner.join()
  71. if __name__ == '__main__':
  72. parser = argparse.ArgumentParser()
  73. parser.add_argument('--host', type=str, default='0.0.0.0', required=False)
  74. parser.add_argument('--port', type=int, default=None, required=False)
  75. parser.add_argument('--num_experts', type=int, default=1, required=False)
  76. parser.add_argument('--expert_cls', type=str, default='ffn', required=False)
  77. parser.add_argument('--hidden_dim', type=int, default=1024, required=False)
  78. parser.add_argument('--num_handlers', type=int, default=None, required=False)
  79. parser.add_argument('--expert_prefix', type=str, default='expert.', required=False)
  80. parser.add_argument('--expert_offset', type=int, default=0, required=False)
  81. parser.add_argument('--max_batch_size', type=int, default=16384, required=False)
  82. parser.add_argument('--device', type=str, default=None, required=False)
  83. parser.add_argument('--no_optimizer', action='store_true')
  84. parser.add_argument('--no_network', action='store_true')
  85. parser.add_argument('--initial_peers', type=str, default="[]", required=False)
  86. parser.add_argument('--network_port', type=int, default=None, required=False)
  87. parser.add_argument('--increase_file_limit', action='store_true')
  88. args = vars(parser.parse_args())
  89. if args.pop('increase_file_limit'):
  90. soft, hard = resource.getrlimit(resource.RLIMIT_NOFILE)
  91. try:
  92. print("Setting open file limit to soft={}, hard={}".format(max(soft, 2 ** 15), max(hard, 2 ** 15)))
  93. resource.setrlimit(resource.RLIMIT_NOFILE, (max(soft, 2 ** 15), max(hard, 2 ** 15)))
  94. except:
  95. print("Could not increase open file limit, currently at soft={}, hard={}".format(soft, hard))
  96. args['initial_peers'] = eval(args['initial_peers'])
  97. try:
  98. server = make_dummy_server(**args, start=True, verbose=True)
  99. server.join()
  100. finally:
  101. server.shutdown()