run_trainer.py 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315
  1. #!/usr/bin/env python
  2. import logging
  3. import os
  4. import pickle
  5. from dataclasses import asdict
  6. from pathlib import Path
  7. import torch
  8. import transformers
  9. from datasets import load_from_disk
  10. from torch.utils.data import DataLoader
  11. from torch_optimizer import Lamb
  12. from transformers import DataCollatorForLanguageModeling, HfArgumentParser, TrainingArguments, set_seed
  13. from transformers.models.albert import AlbertConfig, AlbertForPreTraining, AlbertTokenizerFast
  14. from transformers.optimization import get_linear_schedule_with_warmup
  15. from transformers.trainer import Trainer
  16. from transformers.trainer_utils import is_main_process
  17. from transformers.optimization import Adafactor, AdafactorSchedule
  18. import hivemind
  19. from hivemind.utils.compression import CompressionType
  20. import utils
  21. from arguments import AlbertTrainingArguments, AveragerArguments, CollaborationArguments, DatasetArguments
  22. logger = logging.getLogger(__name__)
  23. LRSchedulerBase = getattr(torch.optim.lr_scheduler, "_LRScheduler", None)
  24. def setup_logging(training_args):
  25. logging.basicConfig(
  26. format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
  27. datefmt="%m/%d/%Y %H:%M:%S",
  28. level=logging.INFO if is_main_process(training_args.local_rank) else logging.WARN,
  29. )
  30. # Log on each process the small summary:
  31. logger.warning(
  32. f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
  33. + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
  34. )
  35. # Set the verbosity to info of the Transformers logger (on main process only):
  36. if is_main_process(training_args.local_rank):
  37. transformers.utils.logging.set_verbosity_info()
  38. transformers.utils.logging.enable_default_handler()
  39. transformers.utils.logging.enable_explicit_format()
  40. logger.info("Training/evaluation parameters %s", training_args)
  41. def get_model(training_args, config, tokenizer):
  42. # Find latest checkpoint in output_dir
  43. output_dir = Path(training_args.output_dir)
  44. logger.info(f'Checkpoint dir {output_dir}, contents {list(output_dir.glob("checkpoint*"))}')
  45. latest_checkpoint_dir = max(output_dir.glob("checkpoint*"), default=None, key=os.path.getctime)
  46. if latest_checkpoint_dir is not None:
  47. logger.info(f"Loading model from {latest_checkpoint_dir}")
  48. model = AlbertForPreTraining.from_pretrained(latest_checkpoint_dir)
  49. else:
  50. logger.info(f"Training from scratch")
  51. model = AlbertForPreTraining(config)
  52. model.resize_token_embeddings(len(tokenizer))
  53. return model
  54. def get_optimizer_and_scheduler(training_args, model):
  55. no_decay = ["bias", "LayerNorm.weight"]
  56. optimizer_grouped_parameters = [
  57. {
  58. "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
  59. "weight_decay": training_args.weight_decay,
  60. },
  61. {
  62. "params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
  63. "weight_decay": 0.0,
  64. },
  65. ]
  66. opt = Adafactor(
  67. optimizer_grouped_parameters,
  68. scale_parameter=True, relative_step=True, warmup_init=True, lr=None
  69. )
  70. scheduler = AdafactorSchedule(
  71. opt
  72. )
  73. return opt, scheduler
  74. class CollaborativeCallback(transformers.TrainerCallback):
  75. """
  76. This callback monitors and reports collaborative training progress.
  77. In case of a catastrophic failure, it can also revert training to a backup.
  78. """
  79. def __init__(
  80. self,
  81. dht: hivemind.DHT,
  82. optimizer: hivemind.CollaborativeOptimizer,
  83. model: torch.nn.Module,
  84. local_public_key: bytes,
  85. statistics_expiration: float,
  86. backup_every_steps: int,
  87. ):
  88. super().__init__()
  89. self.model = model
  90. self.dht, self.collaborative_optimizer = dht, optimizer
  91. self.local_public_key = local_public_key
  92. self.statistics_expiration = statistics_expiration
  93. self.last_reported_collaboration_step = -1
  94. self.samples = 0
  95. self.steps = 0
  96. self.loss = 0
  97. self.total_samples_processed = 0
  98. self.backup_every_steps = backup_every_steps
  99. self.latest_backup = self.backup_state()
  100. def on_train_begin(
  101. self, args: TrainingArguments, state: transformers.TrainerState, control: transformers.TrainerControl, **kwargs
  102. ):
  103. logger.info("Loading state from peers")
  104. self.collaborative_optimizer.load_state_from_peers()
  105. def on_step_end(
  106. self, args: TrainingArguments, state: transformers.TrainerState, control: transformers.TrainerControl, **kwargs
  107. ):
  108. control.should_log = True
  109. if not self.params_are_finite():
  110. self.restore_from_backup(self.latest_backup)
  111. return control
  112. if state.log_history:
  113. self.loss += state.log_history[-1]["loss"]
  114. self.steps += 1
  115. if self.collaborative_optimizer.local_step != self.last_reported_collaboration_step:
  116. self.last_reported_collaboration_step = self.collaborative_optimizer.local_step
  117. self.total_samples_processed += self.samples
  118. samples_per_second = self.collaborative_optimizer.performance_ema.samples_per_second
  119. statistics = utils.LocalMetrics(
  120. step=self.collaborative_optimizer.local_step,
  121. samples_per_second=samples_per_second,
  122. samples_accumulated=self.samples,
  123. loss=self.loss,
  124. mini_steps=self.steps,
  125. )
  126. logger.info(f"Step {self.collaborative_optimizer.local_step}")
  127. logger.info(f"Your current contribution: {self.total_samples_processed} samples")
  128. logger.info(f"Performance: {samples_per_second} samples per second.")
  129. if self.steps:
  130. logger.info(f"Local loss: {self.loss / self.steps}")
  131. if self.collaborative_optimizer.local_step % self.backup_every_steps == 0:
  132. self.latest_backup = self.backup_state()
  133. self.loss = 0
  134. self.steps = 0
  135. if self.collaborative_optimizer.is_synchronized:
  136. self.dht.store(
  137. key=self.collaborative_optimizer.prefix + "_metrics",
  138. subkey=self.local_public_key,
  139. value=statistics.dict(),
  140. expiration_time=hivemind.get_dht_time() + self.statistics_expiration,
  141. return_future=True,
  142. )
  143. self.samples = self.collaborative_optimizer.local_samples_accumulated
  144. return control
  145. @torch.no_grad()
  146. def params_are_finite(self):
  147. for param in self.model.parameters():
  148. if not torch.all(torch.isfinite(param)):
  149. return False
  150. return True
  151. @torch.no_grad()
  152. def backup_state(self) -> bytes:
  153. return pickle.dumps(
  154. {"model": self.model.state_dict(), "optimizer": self.collaborative_optimizer.opt.state_dict()}
  155. )
  156. @torch.no_grad()
  157. def restore_from_backup(self, backup: bytes):
  158. state = pickle.loads(backup)
  159. self.model.load_state_dict(state["model"])
  160. self.collaborative_optimizer.opt.load_state_dict(state["optimizer"])
  161. class NoOpScheduler(LRSchedulerBase):
  162. """Dummy scheduler for transformers.Trainer. The real scheduler is defined in CollaborativeOptimizer.scheduler"""
  163. def get_lr(self):
  164. return [group["lr"] for group in self.optimizer.param_groups]
  165. def print_lr(self, *args, **kwargs):
  166. if self.optimizer.scheduler:
  167. return self.optimizer.scheduler.print_lr(*args, **kwargs)
  168. def step(self):
  169. logger.debug("Called NoOpScheduler.step")
  170. self._last_lr = self.get_lr()
  171. def state_dict(self):
  172. return {}
  173. def load_state_dict(self, *args, **kwargs):
  174. logger.debug("Called NoOpScheduler.load_state_dict")
  175. def main():
  176. parser = HfArgumentParser((AlbertTrainingArguments, DatasetArguments, CollaborationArguments, AveragerArguments))
  177. training_args, dataset_args, collaboration_args, averager_args = parser.parse_args_into_dataclasses()
  178. logger.info(f"Found {len(collaboration_args.initial_peers)} initial peers: {collaboration_args.initial_peers}")
  179. setup_logging(training_args)
  180. # Set seed before initializing model.
  181. set_seed(training_args.seed)
  182. config = AlbertConfig.from_pretrained(dataset_args.config_path, cache_dir=dataset_args.cache_dir)
  183. tokenizer = AlbertTokenizerFast.from_pretrained(dataset_args.tokenizer_path, cache_dir=dataset_args.cache_dir)
  184. model = get_model(training_args, config, tokenizer)
  185. model.to(training_args.device)
  186. model.tie_weights()
  187. tokenized_datasets = load_from_disk(Path(dataset_args.dataset_path))
  188. # This data collator will take care of randomly masking the tokens.
  189. data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer)
  190. opt, scheduler = get_optimizer_and_scheduler(training_args, model)
  191. validators, local_public_key = utils.make_validators(collaboration_args.experiment_prefix)
  192. dht = hivemind.DHT(
  193. start=True,
  194. initial_peers=collaboration_args.initial_peers,
  195. client_mode=collaboration_args.client_mode,
  196. record_validators=validators,
  197. use_ipfs=collaboration_args.use_ipfs,
  198. host_maddrs=collaboration_args.host_maddrs,
  199. announce_maddrs=collaboration_args.announce_maddrs,
  200. identity_path=collaboration_args.identity_path,
  201. )
  202. utils.log_visible_maddrs(dht.get_visible_maddrs(), only_p2p=collaboration_args.use_ipfs)
  203. total_batch_size_per_step = training_args.per_device_train_batch_size * training_args.gradient_accumulation_steps
  204. if torch.cuda.device_count() != 0:
  205. total_batch_size_per_step *= torch.cuda.device_count()
  206. adjusted_target_batch_size = collaboration_args.target_batch_size - collaboration_args.batch_size_lead
  207. collaborative_optimizer = hivemind.CollaborativeOptimizer(
  208. opt=opt,
  209. dht=dht,
  210. scheduler=scheduler,
  211. prefix=collaboration_args.experiment_prefix,
  212. compression_type=CompressionType.Value(collaboration_args.compression),
  213. batch_size_per_step=total_batch_size_per_step,
  214. bandwidth=collaboration_args.bandwidth,
  215. target_batch_size=adjusted_target_batch_size,
  216. client_mode=collaboration_args.client_mode,
  217. verbose=True,
  218. start=True,
  219. **asdict(averager_args),
  220. )
  221. class TrainerWithIndependentShuffling(Trainer):
  222. def get_train_dataloader(self) -> DataLoader:
  223. """Shuffle data independently for each peer to avoid duplicating batches [important for quality]"""
  224. torch.manual_seed(hash(local_public_key))
  225. return super().get_train_dataloader()
  226. trainer = TrainerWithIndependentShuffling(
  227. model=model,
  228. args=training_args,
  229. tokenizer=tokenizer,
  230. data_collator=data_collator,
  231. train_dataset=tokenized_datasets["train"] if training_args.do_train else None,
  232. eval_dataset=tokenized_datasets["validation"] if training_args.do_eval else None,
  233. optimizers=(collaborative_optimizer, NoOpScheduler(collaborative_optimizer)),
  234. callbacks=[
  235. CollaborativeCallback(
  236. dht,
  237. collaborative_optimizer,
  238. model,
  239. local_public_key,
  240. collaboration_args.statistics_expiration,
  241. collaboration_args.backup_every_steps,
  242. )
  243. ],
  244. )
  245. trainer.remove_callback(transformers.trainer_callback.PrinterCallback)
  246. trainer.remove_callback(transformers.trainer_callback.ProgressCallback)
  247. # Training
  248. if training_args.do_train:
  249. latest_checkpoint_dir = max(
  250. Path(training_args.output_dir).glob("checkpoint*"), default=None, key=os.path.getctime
  251. )
  252. trainer.train(model_path=latest_checkpoint_dir)
  253. def _mp_fn(index):
  254. # For xla_spawn (TPUs)
  255. main()
  256. if __name__ == "__main__":
  257. main()