benchmark_optimizer.py 5.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162
  1. import multiprocessing as mp
  2. import random
  3. import time
  4. from contextlib import nullcontext
  5. from dataclasses import dataclass
  6. from functools import partial
  7. from typing import Callable
  8. import torch
  9. import torchvision
  10. from torch import nn as nn
  11. from torch.nn import functional as F
  12. from torch.utils.data import Dataset
  13. import hivemind
  14. from hivemind.optim.optimizer import Optimizer
  15. from hivemind.utils.crypto import RSAPrivateKey
  16. @dataclass(frozen=True)
  17. class TrainingArguments:
  18. seed: int = 42
  19. run_id: str = "my_exp"
  20. num_peers: int = 8
  21. num_clients: int = 3
  22. target_batch_size: int = 256
  23. reuse_grad_buffers: bool = True
  24. delay_grad_averaging: bool = True
  25. delay_optimizer_step: bool = True
  26. average_state_every: int = 1
  27. use_amp: bool = False
  28. lr_base: float = 0.1
  29. lr_gamma: int = 0.1
  30. lr_step_size: int = 10
  31. max_epoch: int = 25
  32. batch_size_min: int = 2
  33. batch_size_max: int = 16
  34. batch_time_min: float = 1.0
  35. batch_time_max: float = 4.5
  36. batch_time_std: float = 0.5
  37. matchmaking_time: float = 5.0
  38. max_refresh_period: float = 5.0
  39. averaging_timeout: float = 15.0
  40. winddown_time: float = 5.0
  41. verbose: bool = True
  42. device: str = "cpu"
  43. make_dataset: Callable[[], Dataset] = lambda: torchvision.datasets.MNIST(train=True, root=".", download=True)
  44. make_model: Callable[[int, int], nn.Module] = lambda num_features, num_classes: nn.Sequential(
  45. nn.Linear(num_features, 64), nn.ReLU(), nn.Linear(64, num_classes)
  46. )
  47. def benchmark_optimizer(args: TrainingArguments):
  48. random.seed(args.seed)
  49. torch.manual_seed(args.seed)
  50. torch.set_num_threads(1)
  51. dht = hivemind.DHT(start=True)
  52. train_dataset = args.make_dataset()
  53. num_features = train_dataset.data[0].numel()
  54. num_classes = len(train_dataset.classes)
  55. X_train = torch.as_tensor(train_dataset.data, dtype=torch.float32)
  56. X_train = X_train.sub_(X_train.mean((0, 1, 2))).div_(X_train.std((0, 1, 2))).reshape((-1, num_features))
  57. y_train = torch.as_tensor(train_dataset.targets, dtype=torch.int64)
  58. del train_dataset
  59. def run_trainer(batch_size: int, batch_time: float, client_mode: bool, verbose: bool):
  60. model = args.make_model(num_features, num_classes).to(args.device)
  61. assert isinstance(model, torch.nn.Module), "model_arch must evaluate to a pytorch module"
  62. optimizer = Optimizer(
  63. run_id=args.run_id,
  64. target_batch_size=args.target_batch_size,
  65. batch_size_per_step=batch_size,
  66. params=model.parameters(),
  67. optimizer=partial(torch.optim.SGD, lr=args.lr_base),
  68. scheduler=partial(torch.optim.lr_scheduler.StepLR, gamma=args.lr_gamma, step_size=args.lr_step_size),
  69. dht=hivemind.DHT(initial_peers=dht.get_visible_maddrs(), client_mode=client_mode, start=True),
  70. tracker_opts=dict(private_key=RSAPrivateKey(), max_refresh_period=args.max_refresh_period),
  71. matchmaking_time=args.matchmaking_time,
  72. averaging_timeout=args.averaging_timeout,
  73. reuse_grad_buffers=args.reuse_grad_buffers,
  74. delay_grad_averaging=args.delay_grad_averaging,
  75. delay_optimizer_step=args.delay_optimizer_step,
  76. average_state_every=args.average_state_every,
  77. client_mode=client_mode,
  78. verbose=verbose,
  79. )
  80. if args.use_amp and args.reuse_grad_buffers:
  81. grad_scaler = hivemind.GradScaler()
  82. else:
  83. # check that hivemind.Optimizer supports regular PyTorch grad scaler as well
  84. grad_scaler = torch.cuda.amp.GradScaler(enabled=args.use_amp)
  85. prev_time = time.perf_counter()
  86. while optimizer.local_epoch < args.max_epoch:
  87. time.sleep(max(0.0, prev_time + random.gauss(batch_time, args.batch_time_std) - time.perf_counter()))
  88. batch = torch.randint(0, len(X_train), (batch_size,))
  89. with torch.cuda.amp.autocast() if args.use_amp else nullcontext():
  90. loss = F.cross_entropy(model(X_train[batch].to(args.device)), y_train[batch].to(args.device))
  91. grad_scaler.scale(loss).backward()
  92. grad_scaler.unscale_(optimizer)
  93. if args.use_amp:
  94. grad_scaler.step(optimizer)
  95. else:
  96. optimizer.step()
  97. grad_scaler.update()
  98. if not args.reuse_grad_buffers:
  99. optimizer.zero_grad()
  100. prev_time = time.perf_counter()
  101. time.sleep(args.winddown_time)
  102. optimizer.shutdown()
  103. peers = []
  104. for index in range(args.num_peers):
  105. batch_size = random.randint(args.batch_size_min, args.batch_size_max)
  106. batch_time = random.uniform(args.batch_time_min, args.batch_time_max)
  107. peers.append(
  108. mp.Process(
  109. target=run_trainer,
  110. name=f"trainer-{index}",
  111. daemon=False,
  112. kwargs=dict(
  113. batch_size=batch_size,
  114. batch_time=batch_time,
  115. client_mode=(index >= args.num_peers - args.num_clients),
  116. verbose=args.verbose and (index == 0),
  117. ),
  118. )
  119. )
  120. try:
  121. for peer in peers[1:]:
  122. peer.start()
  123. peers[0].run()
  124. for peer in peers[1:]:
  125. peer.join()
  126. finally:
  127. for peer in peers[1:]:
  128. peer.kill()
  129. if __name__ == "__main__":
  130. benchmark_optimizer(TrainingArguments())