run_server.py 4.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990
  1. from functools import partial
  2. from pathlib import Path
  3. import configargparse
  4. import torch
  5. from hivemind.proto.runtime_pb2 import CompressionType
  6. from hivemind.server import Server
  7. from hivemind.utils.threading import increase_file_limit
  8. from hivemind.utils.logging import get_logger
  9. from hivemind.server.layers import schedule_name_to_scheduler
  10. logger = get_logger(__name__)
  11. def main():
  12. # fmt:off
  13. parser = configargparse.ArgParser(default_config_files=["config.yml"])
  14. parser.add('-c', '--config', required=False, is_config_file=True, help='config file path')
  15. parser.add_argument('--listen_on', type=str, default='0.0.0.0:*', required=False,
  16. help="'localhost' for local connections only, '0.0.0.0' for ipv4 '[::]' for ipv6")
  17. parser.add_argument('--num_experts', type=int, default=None, required=False, help="The number of experts to serve")
  18. parser.add_argument('--expert_pattern', type=str, default=None, required=False,
  19. help='all expert uids will follow this pattern, e.g. "myexpert.[0:256].[0:1024]" will sample random expert uids'
  20. ' between myexpert.0.0 and myexpert.255.1023 . Use either num_experts and this or expert_uids')
  21. parser.add_argument('--expert_uids', type=str, nargs="*", default=None, required=False,
  22. help="specify the exact list of expert uids to create. Use either this or num_experts"
  23. " and expert_pattern, not both")
  24. parser.add_argument('--expert_cls', type=str, default='ffn', required=False,
  25. help="expert type from test_utils.layers, e.g. 'ffn', 'transformer', 'det_dropout' or 'nop'.")
  26. parser.add_argument('--hidden_dim', type=int, default=1024, required=False, help='main dimension for expert_cls')
  27. parser.add_argument('--num_handlers', type=int, default=None, required=False,
  28. help='server will use this many processes to handle incoming requests')
  29. parser.add_argument('--max_batch_size', type=int, default=16384, required=False,
  30. help='The total number of examples in the same batch will not exceed this value')
  31. parser.add_argument('--device', type=str, default=None, required=False,
  32. help='all experts will use this device in torch notation; default: cuda if available else cpu')
  33. parser.add_argument('--optimizer', type=str, default='adam', required=False, help='adam, sgd or none')
  34. parser.add_argument('--scheduler', type=str, choices=schedule_name_to_scheduler.keys(), default='none',
  35. help='LR scheduler type to use')
  36. parser.add_argument('--num-warmup-steps', type=int, required=False, help='the number of warmup steps for LR schedule')
  37. parser.add_argument('--num-training-steps', type=int, required=False, help='the total number of steps for LR schedule')
  38. parser.add_argument('--no_dht', action='store_true', help='if specified, the server will not be attached to a dht')
  39. parser.add_argument('--initial_peers', type=str, nargs='*', required=False, default=[],
  40. help='one or more peers that can welcome you to the dht, e.g. 1.2.3.4:1337 192.132.231.4:4321')
  41. parser.add_argument('--dht_port', type=int, default=None, required=False, help='DHT node will listen on this port')
  42. parser.add_argument('--increase_file_limit', action='store_true',
  43. help='On *nix, this will increase the max number of processes '
  44. 'a server can spawn before hitting "Too many open files"; Use at your own risk.')
  45. parser.add_argument('--compression', type=str, default='NONE', required=False, help='Tensor compression '
  46. 'parameter for grpc. Can be NONE, MEANSTD or FLOAT16')
  47. parser.add_argument('--checkpoint_dir', type=Path, required=False, help='Directory to store expert checkpoints')
  48. # fmt:on
  49. args = vars(parser.parse_args())
  50. args.pop('config', None)
  51. optimizer = args.pop('optimizer')
  52. if optimizer == 'adam':
  53. optim_cls = torch.optim.Adam
  54. elif optimizer == 'sgd':
  55. optim_cls = partial(torch.optim.SGD, lr=0.01)
  56. elif optimizer == 'none':
  57. optim_cls = None
  58. else:
  59. raise ValueError("optim_cls must be adam, sgd or none")
  60. if args.pop('increase_file_limit'):
  61. increase_file_limit()
  62. compression_type = args.pop("compression")
  63. if compression_type == "MEANSTD":
  64. compression = CompressionType.MEANSTD_LAST_AXIS_FLOAT16
  65. else:
  66. compression = getattr(CompressionType, compression_type)
  67. server = Server.create(**args, optim_cls=optim_cls, start=True, compression=compression)
  68. try:
  69. server.join()
  70. except KeyboardInterrupt:
  71. logger.info("Caught KeyboardInterrupt, shutting down")
  72. finally:
  73. server.shutdown()
  74. if __name__ == '__main__':
  75. main()