test_training.py 6.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200
  1. import time
  2. from functools import partial
  3. import pytest
  4. import torch
  5. import torch.nn as nn
  6. import torch.nn.functional as F
  7. from sklearn.datasets import load_digits
  8. from hivemind import DHT
  9. from hivemind.moe.client import RemoteExpert, RemoteMixtureOfExperts, RemoteSwitchMixtureOfExperts
  10. from hivemind.moe.server import background_server
  11. from hivemind.optim import DecentralizedSGD, DecentralizedAdam
  12. @pytest.mark.forked
  13. def test_training(max_steps: int = 100, threshold: float = 0.9):
  14. dataset = load_digits(n_class=2)
  15. X_train, y_train = torch.tensor(dataset["data"], dtype=torch.float), torch.tensor(dataset["target"])
  16. SGD = partial(torch.optim.SGD, lr=0.05)
  17. with background_server(num_experts=2, device="cpu", optim_cls=SGD, hidden_dim=64, num_handlers=1, no_dht=True) as (
  18. server_endpoint,
  19. _,
  20. ):
  21. expert1 = RemoteExpert("expert.0", server_endpoint)
  22. expert2 = RemoteExpert("expert.1", server_endpoint)
  23. model = nn.Sequential(expert2, nn.ReLU(), expert1, nn.Linear(64, 2))
  24. opt = SGD(model.parameters(), lr=0.05)
  25. for step in range(max_steps):
  26. outputs = model(X_train)
  27. loss = F.cross_entropy(outputs, y_train)
  28. loss.backward()
  29. opt.step()
  30. opt.zero_grad()
  31. accuracy = (outputs.argmax(dim=1) == y_train).float().mean().item()
  32. if accuracy >= threshold:
  33. break
  34. assert accuracy >= threshold, f"too small accuracy: {accuracy}"
  35. @pytest.mark.forked
  36. def test_moe_training(max_steps: int = 100, threshold: float = 0.9, num_experts=2):
  37. dataset = load_digits(n_class=2)
  38. X_train, y_train = torch.tensor(dataset["data"], dtype=torch.float), torch.tensor(dataset["target"])
  39. SGD = partial(torch.optim.SGD, lr=0.05)
  40. all_expert_uids = [f"expert.{i}" for i in range(num_experts)]
  41. with background_server(
  42. expert_uids=all_expert_uids, device="cpu", optim_cls=SGD, hidden_dim=64, num_handlers=1
  43. ) as (server_endpoint, dht_maddrs):
  44. dht = DHT(start=True, initial_peers=dht_maddrs)
  45. moe = RemoteMixtureOfExperts(in_features=64, grid_size=(num_experts,), dht=dht, uid_prefix="expert.", k_best=2)
  46. model = nn.Sequential(moe, nn.Linear(64, 2))
  47. opt = SGD(model.parameters(), lr=0.05)
  48. for step in range(max_steps):
  49. outputs = model(X_train)
  50. loss = F.cross_entropy(outputs, y_train)
  51. loss.backward()
  52. opt.step()
  53. opt.zero_grad()
  54. accuracy = (outputs.argmax(dim=1) == y_train).float().mean().item()
  55. if accuracy >= threshold:
  56. break
  57. assert accuracy >= threshold, f"too small accuracy: {accuracy}"
  58. class SwitchNetwork(nn.Module):
  59. def __init__(self, dht, in_features, num_classes, num_experts):
  60. super().__init__()
  61. self.moe = RemoteSwitchMixtureOfExperts(
  62. in_features=in_features,
  63. grid_size=(num_experts,),
  64. dht=dht,
  65. jitter_eps=0,
  66. uid_prefix="expert.",
  67. k_best=1,
  68. k_min=1,
  69. )
  70. self.linear = nn.Linear(in_features, num_classes)
  71. def forward(self, x):
  72. moe_output, balancing_loss = self.moe(x)
  73. return self.linear(moe_output), balancing_loss
  74. @pytest.mark.forked
  75. def test_switch_training(max_steps: int = 10, threshold: float = 0.9, num_experts=5):
  76. dataset = load_digits(n_class=2)
  77. X_train, y_train = torch.tensor(dataset["data"], dtype=torch.float), torch.tensor(dataset["target"])
  78. SGD = partial(torch.optim.SGD, lr=0.05)
  79. all_expert_uids = [f"expert.{i}" for i in range(num_experts)]
  80. with background_server(
  81. expert_uids=all_expert_uids, device="cpu", optim_cls=SGD, hidden_dim=64, num_handlers=1
  82. ) as (server_endpoint, dht_maddrs):
  83. dht = DHT(start=True, initial_peers=dht_maddrs)
  84. model = SwitchNetwork(dht, 64, 2, num_experts)
  85. opt = SGD(model.parameters(), lr=0.05)
  86. for step in range(max_steps):
  87. outputs, balancing_loss = model(X_train)
  88. loss = F.cross_entropy(outputs, y_train) + 0.01 * balancing_loss
  89. loss.backward()
  90. opt.step()
  91. opt.zero_grad()
  92. accuracy = (outputs.argmax(dim=1) == y_train).float().mean().item()
  93. if accuracy >= threshold:
  94. break
  95. assert model.moe.grid_utilization.min().item() > (1 / num_experts) / 2
  96. assert accuracy >= threshold, f"too small accuracy: {accuracy}"
  97. @pytest.mark.forked
  98. def test_decentralized_optimizer_step():
  99. dht_root = DHT(start=True)
  100. initial_peers = dht_root.get_visible_maddrs()
  101. param1 = torch.nn.Parameter(torch.zeros(32, 32), requires_grad=True)
  102. opt1 = DecentralizedSGD(
  103. [param1],
  104. lr=0.1,
  105. dht=DHT(initial_peers=initial_peers, start=True),
  106. prefix="foo",
  107. target_group_size=2,
  108. verbose=True,
  109. )
  110. param2 = torch.nn.Parameter(torch.ones(32, 32), requires_grad=True)
  111. opt2 = DecentralizedSGD(
  112. [param2],
  113. lr=0.05,
  114. dht=DHT(initial_peers=initial_peers, start=True),
  115. prefix="foo",
  116. target_group_size=2,
  117. verbose=True,
  118. )
  119. assert not torch.allclose(param1, param2)
  120. (param1.sum() + 300 * param2.sum()).backward()
  121. opt1.step()
  122. opt2.step()
  123. time.sleep(0.5)
  124. assert torch.allclose(param1, param2)
  125. reference = 0.5 * (0.0 - 0.1 * 1.0) + 0.5 * (1.0 - 0.05 * 300)
  126. assert torch.allclose(param1, torch.full_like(param1, reference))
  127. @pytest.mark.forked
  128. def test_decentralized_optimizer_averaging():
  129. dht_root = DHT(start=True)
  130. initial_peers = dht_root.get_visible_maddrs()
  131. param1 = torch.nn.Parameter(torch.zeros(32, 32), requires_grad=True)
  132. opt1 = DecentralizedAdam(
  133. [param1],
  134. lr=0.1,
  135. averaging_steps_period=1,
  136. dht=DHT(initial_peers=initial_peers, start=True),
  137. prefix="foo",
  138. target_group_size=2,
  139. verbose=True,
  140. )
  141. param2 = torch.nn.Parameter(torch.ones(32, 32), requires_grad=True)
  142. opt2 = DecentralizedAdam(
  143. [param2],
  144. lr=0.05,
  145. averaging_steps_period=1,
  146. dht=DHT(initial_peers=initial_peers, start=True),
  147. prefix="foo",
  148. target_group_size=2,
  149. verbose=True,
  150. )
  151. assert not torch.allclose(param1, param2)
  152. (param1.sum() + param2.sum()).backward()
  153. opt1.step()
  154. opt2.step()
  155. time.sleep(0.5)
  156. assert torch.allclose(param1, param2)
  157. assert torch.allclose(opt1.state[param1]["exp_avg_sq"], opt2.state[param2]["exp_avg_sq"])