test_allreduce.py 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248
  1. import asyncio
  2. import random
  3. import time
  4. from typing import Sequence
  5. import grpc
  6. import pytest
  7. import torch
  8. from hivemind import aenumerate, Endpoint
  9. from hivemind.averaging.allreduce import AllReduceRunner, AveragingMode
  10. from hivemind.averaging.partition import TensorPartContainer, TensorPartReducer
  11. from hivemind.proto import averaging_pb2_grpc
  12. from hivemind.proto.runtime_pb2 import CompressionType
  13. from hivemind.utils import deserialize_torch_tensor, ChannelCache
  14. @pytest.mark.forked
  15. @pytest.mark.asyncio
  16. async def test_partitioning():
  17. all_tensors = [
  18. torch.randn(30_000, 128),
  19. torch.rand(128),
  20. torch.ones(1, 1, 1, 1, 1, 1, 8),
  21. torch.ones(1, 0),
  22. torch.zeros(0),
  23. torch.zeros([]),
  24. torch.randn(65536),
  25. torch.rand(512, 2048),
  26. torch.randn(1024, 1024).add(-9),
  27. torch.zeros(1020),
  28. torch.randn(4096),
  29. ]
  30. # note: this test does _not_ use parameterization to reuse sampled tensors
  31. for num_tensors in 1, 3, 5:
  32. for part_size_bytes in 31337, 2 ** 20, 10 ** 10:
  33. for weights in [(1, 1), (0.333, 0.1667, 0.5003), (1.0, 0.0), [0.0, 0.4, 0.6, 0.0]]:
  34. tensors = random.choices(all_tensors, k=num_tensors)
  35. partition = TensorPartContainer(tensors, weights, part_size_bytes=part_size_bytes)
  36. async def write_tensors():
  37. for peer_index in range(partition.group_size):
  38. async for part_index, part in aenumerate(partition.iterate_input_parts_for(peer_index)):
  39. output_tensor = torch.sin(deserialize_torch_tensor(part))
  40. partition.register_processed_part(peer_index, part_index, output_tensor)
  41. task = asyncio.create_task(write_tensors())
  42. tensor_index = 0
  43. async for output_tensor in partition.iterate_output_tensors():
  44. assert torch.allclose(output_tensor, torch.sin(tensors[tensor_index]))
  45. tensor_index += 1
  46. assert tensor_index == len(tensors)
  47. await task
  48. @pytest.mark.parametrize(
  49. "tensors",
  50. [
  51. [torch.zeros(0)],
  52. [torch.zeros(0), torch.zeros(0), torch.zeros(1)],
  53. [torch.zeros(0), torch.zeros(999), torch.zeros(0), torch.zeros(0)],
  54. ],
  55. )
  56. @pytest.mark.parametrize("peer_fractions", [(0.33, 0.44, 0.23), (0.5, 0.5), (0.1, 0.0, 0.9), (1.0,), (0.1,) * 9])
  57. @pytest.mark.forked
  58. @pytest.mark.asyncio
  59. async def test_partitioning_edge_cases(tensors: Sequence[torch.Tensor], peer_fractions: Sequence[float]):
  60. partition = TensorPartContainer(tensors, peer_fractions, part_size_bytes=16)
  61. for peer_index in range(len(peer_fractions)):
  62. async for part_index, part in aenumerate(partition.iterate_input_parts_for(peer_index)):
  63. partition.register_processed_part(peer_index, part_index, deserialize_torch_tensor(part))
  64. tensor_index = 0
  65. async for output_tensor in partition.iterate_output_tensors():
  66. assert torch.allclose(output_tensor, tensors[tensor_index])
  67. tensor_index += 1
  68. @pytest.mark.forked
  69. @pytest.mark.asyncio
  70. async def test_partitioning_asynchronous():
  71. """ensure that tensor partitioning does not interfere with asynchronous code"""
  72. tensors = [torch.randn(2048, 2048), torch.randn(1024, 4096), torch.randn(4096, 1024), torch.randn(30_000, 1024)]
  73. peer_fractions = [0.4, 0.3, 0.2, 0.1]
  74. partition = TensorPartContainer(tensors, peer_fractions, compression_type=CompressionType.QUANTILE_8BIT)
  75. read_started, read_finished = asyncio.Event(), asyncio.Event()
  76. async def write_tensors():
  77. for peer_index in range(partition.group_size):
  78. async for part_index, part in aenumerate(partition.iterate_input_parts_for(peer_index)):
  79. partition.register_processed_part(peer_index, part_index, deserialize_torch_tensor(part))
  80. assert read_started.is_set(), "partitioner should have started reading before it finished writing"
  81. async def read_tensors():
  82. async for _ in partition.iterate_output_tensors():
  83. read_started.set()
  84. read_finished.set()
  85. async def wait_synchronously():
  86. time_in_waiting = 0.0
  87. while not read_finished.is_set():
  88. await asyncio.sleep(0.01)
  89. time_in_waiting += 0.01
  90. return time_in_waiting
  91. start_time = time.perf_counter()
  92. *_, time_in_waiting = await asyncio.gather(write_tensors(), read_tensors(), wait_synchronously())
  93. wall_time = time.perf_counter() - start_time
  94. # check that event loop had enough time to respond to incoming requests; this is over 50% most of the time
  95. # we set 33% threshold to ensure that the test will pass reliably. If we break prefetch, this drops to <10%
  96. assert time_in_waiting > wall_time / 3, f"Event loop could only run {time_in_waiting / wall_time :.5f} of the time"
  97. @pytest.mark.parametrize("num_senders", [1, 2, 4, 10])
  98. @pytest.mark.parametrize("num_parts", [0, 1, 100])
  99. @pytest.mark.parametrize("synchronize_prob", [1.0, 0.1, 0.0])
  100. @pytest.mark.forked
  101. @pytest.mark.asyncio
  102. async def test_reducer(num_senders: int, num_parts: int, synchronize_prob: float):
  103. tensor_part_shapes = [torch.Size([i]) for i in range(num_parts)]
  104. reducer = TensorPartReducer(tensor_part_shapes, num_senders)
  105. local_tensors_by_sender = [[torch.randn(i) for i in range(num_parts)] for j in range(num_senders)]
  106. async def send_tensors(sender_index: int):
  107. local_tensors = local_tensors_by_sender[sender_index]
  108. averaged_parts = []
  109. pending_tasks = []
  110. for part_index in range(num_parts):
  111. pending_tasks.append(
  112. asyncio.create_task(reducer.accumulate_part(sender_index, part_index, local_tensors[part_index]))
  113. )
  114. if random.random() < synchronize_prob or part_index == num_parts - 1:
  115. averaged_parts.extend(await asyncio.gather(*pending_tasks))
  116. pending_tasks = []
  117. return averaged_parts
  118. averaged_tensors_by_peer = await asyncio.gather(*map(send_tensors, range(num_senders)))
  119. reference = [
  120. sum(local_tensors_by_sender[sender_index][part_index] for sender_index in range(num_senders)) / num_senders
  121. for part_index in range(num_parts)
  122. ]
  123. for averaged_tensors in averaged_tensors_by_peer:
  124. assert len(averaged_tensors) == len(reference)
  125. for averaging_result, reference_tensor in zip(averaged_tensors, reference):
  126. assert torch.allclose(averaging_result, reference_tensor, rtol=1e-3, atol=1e-5)
  127. class AllreduceRunnerForTesting(AllReduceRunner):
  128. """a version of AllReduceRunner that was monkey-patched to accept custom endpoint names"""
  129. def __init__(self, *args, peer_endpoints, **kwargs):
  130. self.__peer_endpoints = peer_endpoints
  131. super().__init__(*args, **kwargs)
  132. def _get_peer_stub(self, peer: Endpoint) -> averaging_pb2_grpc.DecentralizedAveragingStub:
  133. return ChannelCache.get_stub(
  134. self.__peer_endpoints[peer], averaging_pb2_grpc.DecentralizedAveragingStub, aio=True
  135. )
  136. NODE, CLIENT, AUX = AveragingMode.NODE, AveragingMode.CLIENT, AveragingMode.AUX
  137. @pytest.mark.parametrize(
  138. "peer_modes, averaging_weights, peer_fractions",
  139. [
  140. ((NODE, NODE, NODE, NODE), (1, 1, 1, 1), (1, 1, 1, 1)),
  141. ((NODE, NODE, NODE, NODE), (0.1, 0.2, 0.3, 0.4), (1, 1, 1, 1)),
  142. ((NODE, NODE, NODE, NODE), (1, 1, 1, 1), (1, 2, 3, 0)),
  143. ((NODE, NODE, NODE, CLIENT), (1, 1, 1, 1), (1, 2, 3, 0)),
  144. ((NODE, NODE, NODE, AUX), (1, 1, 1, 0), (1, 2, 3, 4)),
  145. ((NODE, NODE, NODE, NODE), (0.15, 0.0, 0.35, 0.45), (1, 1, 1, 1)),
  146. ((NODE, AUX, NODE, CLIENT), (0.15, 0.0, 0.35, 0.45), (150, 200, 67, 0)),
  147. ((AUX, AUX, AUX, AUX), (0.0, 0.0, 0.0, 0.0), (1, 2, 3, 4)),
  148. ],
  149. )
  150. @pytest.mark.parametrize(
  151. "part_size_bytes",
  152. [2 ** 20, 256, 19],
  153. )
  154. @pytest.mark.forked
  155. @pytest.mark.asyncio
  156. async def test_allreduce_protocol(peer_modes, averaging_weights, peer_fractions, part_size_bytes):
  157. """Run group allreduce protocol manually without grpc, see if the internal logic is working as intended"""
  158. peers = "alice", "bob", "carol", "colab"
  159. tensors_by_peer = {
  160. peer: [torch.randn(3, 128), torch.rand(32), torch.tensor(i, dtype=torch.float32)]
  161. for i, peer in enumerate(peers)
  162. }
  163. group_id = random.getrandbits(160).to_bytes(length=20, byteorder="big")
  164. servers = []
  165. allreduce_protocols = []
  166. peer_endpoints = {}
  167. for peer in peers:
  168. server = grpc.aio.server()
  169. allreduce_protocol = AllreduceRunnerForTesting(
  170. group_id=group_id,
  171. endpoint=peer,
  172. tensors=[x.clone() for x in tensors_by_peer[peer]],
  173. ordered_group_endpoints=peers,
  174. peer_fractions=peer_fractions,
  175. modes=peer_modes,
  176. weights=averaging_weights,
  177. peer_endpoints=peer_endpoints,
  178. part_size_bytes=part_size_bytes,
  179. )
  180. averaging_pb2_grpc.add_DecentralizedAveragingServicer_to_server(allreduce_protocol, server)
  181. peer_endpoints[peer] = f"127.0.0.1:{server.add_insecure_port('127.0.0.1:*')}"
  182. allreduce_protocols.append(allreduce_protocol)
  183. servers.append(server)
  184. await server.start()
  185. async def _run_allreduce_inplace(allreduce: AllReduceRunner):
  186. async for tensor_index, tensor_delta in aenumerate(allreduce):
  187. allreduce.tensor_part_container.local_tensors[tensor_index].add_(tensor_delta)
  188. await asyncio.gather(*map(_run_allreduce_inplace, allreduce_protocols))
  189. reference_tensors = [
  190. sum(tensors_by_peer[peer][i] * averaging_weights[peer_index] for peer_index, peer in enumerate(peers))
  191. / sum(averaging_weights)
  192. for i in range(len(tensors_by_peer[peers[0]]))
  193. ]
  194. for peer_index, protocol in enumerate(allreduce_protocols):
  195. assert protocol._future.done()
  196. if protocol.modes[peer_index] != AveragingMode.AUX:
  197. targets_for_peer = reference_tensors
  198. else:
  199. targets_for_peer = tensors_by_peer[peers[peer_index]]
  200. output_tensors = protocol.tensor_part_container.local_tensors
  201. assert len(output_tensors) == len(targets_for_peer)
  202. assert all(torch.allclose(our, ref, atol=1e-6, rtol=0) for our, ref in zip(output_tensors, targets_for_peer))
  203. for server in servers:
  204. await server.stop(grace=1)