123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103 |
- import time
- import torch
- from torch import nn as nn
- from hivemind.moe.server.layers.custom_experts import register_expert_class
- # https://github.com/huggingface/transformers/blob/master/src/transformers/activations.py
- @torch.jit.script
- def gelu_fast(x):
- return 0.5 * x * (1.0 + torch.tanh(x * 0.7978845608 * (1.0 + 0.044715 * x * x)))
- ffn_sample_input = lambda batch_size, hid_dim: torch.empty((batch_size, hid_dim))
- @register_expert_class("ffn", ffn_sample_input)
- class FeedforwardBlock(nn.Module):
- def __init__(self, hid_dim):
- super().__init__()
- self.ffn = nn.Linear(hid_dim, 4 * hid_dim)
- self.ffn_output = nn.Linear(4 * hid_dim, hid_dim)
- self.layer_norm = nn.LayerNorm(hid_dim, eps=1e-12)
- def forward(self, x):
- ffn_output = self.ffn(x)
- ffn_output = gelu_fast(ffn_output)
- ffn_output = self.ffn_output(ffn_output)
- return self.layer_norm(x + ffn_output)
- class TransformerEncoderLayer(nn.Module):
- """
- A slight modification of torch.nn.TransformerEncoderLayer which allows for torch.jit scripting
- """
- def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1):
- super().__init__()
- self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
- # Implementation of Feedforward model
- self.linear1 = nn.Linear(d_model, dim_feedforward)
- self.dropout = nn.Dropout(dropout)
- self.linear2 = nn.Linear(dim_feedforward, d_model)
- self.norm1 = nn.LayerNorm(d_model)
- self.norm2 = nn.LayerNorm(d_model)
- self.dropout1 = nn.Dropout(dropout)
- self.dropout2 = nn.Dropout(dropout)
- self.activation = gelu_fast
- def forward(self, src, src_key_padding_mask=None):
- # (N, S, E) -> (S, N, E)
- src = src.transpose(0, 1)
- src2 = self.self_attn(src, src, src, key_padding_mask=src_key_padding_mask)[0]
- src = src + self.dropout1(src2)
- src = self.norm1(src)
- src2 = self.linear2(self.dropout(self.activation(self.linear1(src))))
- src = src + self.dropout2(src2)
- src = self.norm2(src)
- # (S, N, E) -> (N, S, E)
- src = src.transpose(0, 1)
- return src
- transformer_sample_input = lambda batch_size, hid_dim: (
- torch.empty((batch_size, 128, hid_dim)),
- torch.empty((batch_size, 128), dtype=torch.bool),
- )
- @register_expert_class("transformer", transformer_sample_input)
- class TunedTransformer(TransformerEncoderLayer):
- def __init__(self, hid_dim):
- super().__init__(hid_dim, dim_feedforward=4 * hid_dim, nhead=16)
- nop_sample_input = lambda batch_size, hid_dim: torch.empty((batch_size, hid_dim))
- @register_expert_class("nop", nop_sample_input)
- class NopExpert(nn.Sequential):
- def __init__(self, hid_dim):
- super().__init__()
- self.w = nn.Parameter(torch.zeros(0), requires_grad=True)
- def forward(self, x):
- return x.clone()
- @register_expert_class("nop_delay", nop_sample_input)
- class DelayedNopExpert(nn.Sequential):
- def __init__(self, hid_dim, delay=0.5):
- super().__init__()
- self.w = nn.Parameter(torch.zeros(0), requires_grad=True)
- self.delay = delay
- def forward(self, x):
- time.sleep(self.delay)
- return x.clone()
|