run_trainer.py 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303
  1. #!/usr/bin/env python
  2. import logging
  3. import os
  4. from dataclasses import asdict
  5. from pathlib import Path
  6. from typing import Dict, Any
  7. import torch
  8. import transformers
  9. from datasets import load_from_disk
  10. from torch.utils.data import DataLoader
  11. from transformers import (
  12. set_seed,
  13. HfArgumentParser,
  14. TrainingArguments,
  15. DataCollatorForLanguageModeling,
  16. AlbertTokenizerFast,
  17. AlbertConfig,
  18. AlbertForPreTraining,
  19. )
  20. from transformers.optimization import get_linear_schedule_with_warmup
  21. from transformers.trainer_utils import is_main_process
  22. from transformers.trainer import Trainer
  23. from torch_optimizer import Lamb
  24. import hivemind
  25. import utils
  26. from arguments import CollaborationArguments, DatasetArguments, AlbertTrainingArguments
  27. logger = logging.getLogger(__name__)
  28. LRSchedulerBase = getattr(torch.optim.lr_scheduler, "_LRScheduler", None)
  29. def setup_logging(training_args):
  30. logging.basicConfig(
  31. format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
  32. datefmt="%m/%d/%Y %H:%M:%S",
  33. level=logging.INFO if is_main_process(training_args.local_rank) else logging.WARN,
  34. )
  35. # Log on each process the small summary:
  36. logger.warning(
  37. f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
  38. + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
  39. )
  40. # Set the verbosity to info of the Transformers logger (on main process only):
  41. if is_main_process(training_args.local_rank):
  42. transformers.utils.logging.set_verbosity_info()
  43. transformers.utils.logging.enable_default_handler()
  44. transformers.utils.logging.enable_explicit_format()
  45. logger.info("Training/evaluation parameters %s", training_args)
  46. def get_model(training_args, config, tokenizer):
  47. # Find latest checkpoint in output_dir
  48. output_dir = Path(training_args.output_dir)
  49. logger.info(f'Checkpoint dir {output_dir}, contents {list(output_dir.glob("checkpoint*"))}')
  50. latest_checkpoint_dir = max(output_dir.glob("checkpoint*"), default=None, key=os.path.getctime)
  51. if latest_checkpoint_dir is not None:
  52. logger.info(f"Loading model from {latest_checkpoint_dir}")
  53. model = AlbertForPreTraining.from_pretrained(latest_checkpoint_dir)
  54. else:
  55. logger.info(f"Training from scratch")
  56. model = AlbertForPreTraining(config)
  57. model.resize_token_embeddings(len(tokenizer))
  58. return model
  59. def get_optimizer_and_scheduler(training_args, model):
  60. no_decay = ["bias", "LayerNorm.weight"]
  61. optimizer_grouped_parameters = [
  62. {
  63. "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
  64. "weight_decay": training_args.weight_decay,
  65. },
  66. {
  67. "params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
  68. "weight_decay": 0.0,
  69. },
  70. ]
  71. opt = Lamb(
  72. optimizer_grouped_parameters,
  73. lr=training_args.learning_rate,
  74. betas=(training_args.adam_beta1, training_args.adam_beta2),
  75. eps=training_args.adam_epsilon,
  76. weight_decay=training_args.weight_decay,
  77. clamp_value=training_args.clamp_value,
  78. debias=True,
  79. )
  80. scheduler = get_linear_schedule_with_warmup(
  81. opt, num_warmup_steps=training_args.warmup_steps, num_training_steps=training_args.max_steps
  82. )
  83. return opt, scheduler
  84. class CollaborativeCallback(transformers.TrainerCallback):
  85. def __init__(
  86. self,
  87. dht: hivemind.DHT,
  88. optimizer: hivemind.CollaborativeOptimizer,
  89. model: torch.nn.Module,
  90. local_public_key: bytes,
  91. statistics_expiration: float,
  92. ):
  93. super().__init__()
  94. self.model = model
  95. self.dht, self.collaborative_optimizer = dht, optimizer
  96. self.local_public_key = local_public_key
  97. self.statistics_expiration = statistics_expiration
  98. self.last_reported_collaboration_step = -1
  99. self.previous_state = self.get_current_state()
  100. self.samples = 0
  101. self.steps = 0
  102. self.loss = 0
  103. self.total_samples_processed = 0
  104. def on_train_begin(
  105. self, args: TrainingArguments, state: transformers.TrainerState, control: transformers.TrainerControl, **kwargs
  106. ):
  107. logger.info("Loading state from peers")
  108. self.collaborative_optimizer.load_state_from_peers()
  109. def on_step_end(
  110. self, args: TrainingArguments, state: transformers.TrainerState, control: transformers.TrainerControl, **kwargs
  111. ):
  112. control.should_log = True
  113. if not self.params_are_finite():
  114. self.load_from_state(self.previous_state)
  115. return control
  116. self.previous_state = self.get_current_state()
  117. if state.log_history:
  118. self.loss += state.log_history[-1]["loss"]
  119. self.steps += 1
  120. if self.collaborative_optimizer.local_step != self.last_reported_collaboration_step:
  121. self.last_reported_collaboration_step = self.collaborative_optimizer.local_step
  122. self.total_samples_processed += self.samples
  123. samples_per_second = self.collaborative_optimizer.performance_ema.samples_per_second
  124. statistics = utils.LocalMetrics(
  125. step=self.collaborative_optimizer.local_step,
  126. samples_per_second=samples_per_second,
  127. samples_accumulated=self.samples,
  128. loss=self.loss,
  129. mini_steps=self.steps,
  130. )
  131. logger.info(f"Step {self.collaborative_optimizer.local_step}")
  132. logger.info(f"Your current contribution: {self.total_samples_processed} samples")
  133. if self.steps:
  134. logger.info(f"Local loss: {self.loss / self.steps}")
  135. self.loss = 0
  136. self.steps = 0
  137. if self.collaborative_optimizer.is_synchronized:
  138. self.dht.store(
  139. key=self.collaborative_optimizer.prefix + "_metrics",
  140. subkey=self.local_public_key,
  141. value=statistics.dict(),
  142. expiration_time=hivemind.get_dht_time() + self.statistics_expiration,
  143. return_future=True,
  144. )
  145. self.samples = self.collaborative_optimizer.local_samples_accumulated
  146. return control
  147. @torch.no_grad()
  148. def get_current_state(self) -> Dict[str, Any]:
  149. return {"model": self.model.state_dict(), "opt": self.collaborative_optimizer.opt.state_dict()}
  150. @torch.no_grad()
  151. def load_from_state(self, state):
  152. self.model.load_state_dict(state["model"])
  153. self.collaborative_optimizer.opt.load_state_dict(state["opt"])
  154. @torch.no_grad()
  155. def params_are_finite(self):
  156. for param in self.model.parameters():
  157. if not torch.all(torch.isfinite(param)):
  158. return False
  159. return True
  160. class NoOpScheduler(LRSchedulerBase):
  161. """Dummy scheduler for transformers.Trainer. The real scheduler is defined in CollaborativeOptimizer.scheduler"""
  162. def get_lr(self):
  163. return [group["lr"] for group in self.optimizer.param_groups]
  164. def print_lr(self, *args, **kwargs):
  165. if self.optimizer.scheduler:
  166. return self.optimizer.scheduler.print_lr(*args, **kwargs)
  167. def step(self):
  168. logger.debug("Called NoOpScheduler.step")
  169. self._last_lr = self.get_lr()
  170. def state_dict(self):
  171. return {}
  172. def load_state_dict(self, *args, **kwargs):
  173. logger.debug("Called NoOpScheduler.load_state_dict")
  174. def main():
  175. parser = HfArgumentParser((AlbertTrainingArguments, DatasetArguments, CollaborationArguments))
  176. training_args, dataset_args, collaboration_args = parser.parse_args_into_dataclasses()
  177. logger.info(f"Found {len(collaboration_args.initial_peers)} initial peers: {collaboration_args.initial_peers}")
  178. if len(collaboration_args.initial_peers) == 0:
  179. raise ValueError("Please specify at least one network endpoint in initial peers.")
  180. collaboration_args_dict = asdict(collaboration_args)
  181. setup_logging(training_args)
  182. # Set seed before initializing model.
  183. set_seed(training_args.seed)
  184. config = AlbertConfig.from_pretrained(dataset_args.config_path, cache_dir=dataset_args.cache_dir)
  185. tokenizer = AlbertTokenizerFast.from_pretrained(dataset_args.tokenizer_path, cache_dir=dataset_args.cache_dir)
  186. model = get_model(training_args, config, tokenizer)
  187. model.to(training_args.device)
  188. tokenized_datasets = load_from_disk(Path(dataset_args.dataset_path))
  189. # This data collator will take care of randomly masking the tokens.
  190. data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer)
  191. opt, scheduler = get_optimizer_and_scheduler(training_args, model)
  192. validators, local_public_key = utils.make_validators(collaboration_args_dict["experiment_prefix"])
  193. dht = hivemind.DHT(
  194. start=True,
  195. initial_peers=collaboration_args_dict.pop("initial_peers"),
  196. listen=not collaboration_args_dict["client_mode"],
  197. record_validators=validators,
  198. use_ipfs=collaboration_args_dict["use_ipfs"],
  199. host_maddrs=collaboration_args_dict.pop("host_maddrs"),
  200. announce_maddrs=collaboration_args_dict.pop("announce_maddrs"),
  201. )
  202. utils.log_visible_maddrs(dht.get_visible_maddrs(), only_p2p=collaboration_args_dict.pop("use_ipfs"))
  203. total_batch_size_per_step = training_args.per_device_train_batch_size * training_args.gradient_accumulation_steps
  204. if torch.cuda.device_count() != 0:
  205. total_batch_size_per_step *= torch.cuda.device_count()
  206. statistics_expiration = collaboration_args_dict.pop("statistics_expiration")
  207. adjusted_target_batch_size = collaboration_args_dict.pop("target_batch_size") - collaboration_args_dict.pop(
  208. "batch_size_lead"
  209. )
  210. collaborative_optimizer = hivemind.CollaborativeOptimizer(
  211. opt=opt,
  212. dht=dht,
  213. scheduler=scheduler,
  214. prefix=collaboration_args_dict.pop("experiment_prefix"),
  215. compression_type=hivemind.utils.CompressionType.Value(collaboration_args_dict.pop("compression")),
  216. batch_size_per_step=total_batch_size_per_step,
  217. throughput=collaboration_args_dict.pop("bandwidth"),
  218. target_batch_size=adjusted_target_batch_size,
  219. client_mode=collaboration_args_dict.pop("client_mode"),
  220. verbose=True,
  221. start=True,
  222. **collaboration_args_dict,
  223. )
  224. class TrainerWithIndependentShuffling(Trainer):
  225. def get_train_dataloader(self) -> DataLoader:
  226. """Shuffle data independently for each peer to avoid duplicating batches [important for quality]"""
  227. torch.manual_seed(hash(local_public_key))
  228. return super().get_train_dataloader()
  229. trainer = TrainerWithIndependentShuffling(
  230. model=model,
  231. args=training_args,
  232. tokenizer=tokenizer,
  233. data_collator=data_collator,
  234. train_dataset=tokenized_datasets["train"] if training_args.do_train else None,
  235. eval_dataset=tokenized_datasets["validation"] if training_args.do_eval else None,
  236. optimizers=(collaborative_optimizer, NoOpScheduler(collaborative_optimizer)),
  237. callbacks=[
  238. CollaborativeCallback(dht, collaborative_optimizer, model, local_public_key, statistics_expiration)
  239. ],
  240. )
  241. trainer.remove_callback(transformers.trainer_callback.PrinterCallback)
  242. trainer.remove_callback(transformers.trainer_callback.ProgressCallback)
  243. # Training
  244. if training_args.do_train:
  245. latest_checkpoint_dir = max(
  246. Path(training_args.output_dir).glob("checkpoint*"), default=None, key=os.path.getctime
  247. )
  248. trainer.train(model_path=latest_checkpoint_dir)
  249. if __name__ == "__main__":
  250. main()