arguments.py 5.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151
  1. from dataclasses import dataclass, field
  2. from typing import List, Optional
  3. from transformers import TrainingArguments
  4. @dataclass
  5. class BaseTrainingArguments:
  6. run_id: str = field(
  7. default="albert", metadata={"help": "A unique 'name' of this experiment, used to store metadata on the DHT"}
  8. )
  9. initial_peers: List[str] = field(
  10. default_factory=list,
  11. metadata={
  12. "help": "Multiaddrs of the peers that will welcome you into the existing collaboration. "
  13. "Example: /ip4/203.0.113.1/tcp/31337/p2p/XXXX /ip4/203.0.113.2/tcp/7777/p2p/YYYY"
  14. },
  15. )
  16. use_ipfs: bool = field(
  17. default=False,
  18. metadata={
  19. "help": "Use IPFS to find initial_peers. If enabled, you only need to provide /p2p/XXXX part of the multiaddrs "
  20. "for the initial_peers (no need to specify a particular IPv4/IPv6 host and port)"
  21. },
  22. )
  23. host_maddrs: List[str] = field(
  24. default_factory=lambda: ["/ip4/0.0.0.0/tcp/0"],
  25. metadata={
  26. "help": "Multiaddrs to listen for external connections from other p2p instances. "
  27. "Defaults to all IPv4 interfaces and the TCP protocol: /ip4/0.0.0.0/tcp/0"
  28. },
  29. )
  30. announce_maddrs: List[str] = field(
  31. default_factory=list,
  32. metadata={"help": "Visible multiaddrs the host announces for external connections from other p2p instances"},
  33. )
  34. identity_path: Optional[str] = field(
  35. default=None,
  36. metadata={
  37. "help": "Path to a pre-generated private key file. If defined, makes the peer ID deterministic. "
  38. "May be generated using ``./p2p-keygen`` from ``go-libp2p-daemon``."
  39. },
  40. )
  41. @dataclass
  42. class AveragerArguments:
  43. target_group_size: int = field(default=256, metadata={"help": "Maximum group size for all-reduce"})
  44. @dataclass
  45. class ProgressTrackerArguments:
  46. min_refresh_period: float = field(
  47. default=0.5, metadata={"help": "Wait for at least this many seconds before fetching new collaboration state"}
  48. )
  49. max_refresh_period: float = field(
  50. default=30, metadata={"help": "Wait for at most this many seconds before fetching new collaboration state"}
  51. )
  52. default_refresh_period: float = field(
  53. default=3, metadata={"help": "Attempt to fetch collaboration state every this often until successful"}
  54. )
  55. expected_drift_peers: float = field(
  56. default=3, metadata={"help": "Trainer assumes that this many new peers can join per step"}
  57. )
  58. expected_drift_rate: float = field(
  59. default=0.2, metadata={"help": "Trainer assumes that this fraction of current size can join per step"}
  60. )
  61. metadata_expiration: float = field(
  62. default=120, metadata={"help": "Peer's metadata will be removed if not updated in this many seconds"}
  63. )
  64. @dataclass
  65. class OptimizerArguments:
  66. target_batch_size: int = field(
  67. default=4096,
  68. metadata={"help": "Perform optimizer step after all peers collectively accumulate this many samples"},
  69. )
  70. client_mode: bool = field(
  71. default=False,
  72. metadata={"help": "Of True, runs training without incoming connections, in a firewall-compatible mode"},
  73. )
  74. batch_size_lead: int = field(
  75. default=0,
  76. metadata={"help": "Optional: begin looking for group in advance, this many samples before target_batch_size"},
  77. )
  78. bandwidth: float = field(
  79. default=100.0,
  80. metadata={"help": "Available network bandwidth, in mbps (used for load balancing in all-reduce)"},
  81. )
  82. averaging_timeout: float = field(
  83. default=60.0, metadata={"help": "Give up on averaging step after this many seconds"}
  84. )
  85. matchmaking_time: float = field(
  86. default=5.0, metadata={"help": "When looking for group, wait for requests for at least this many seconds"}
  87. )
  88. @dataclass
  89. class CollaborationArguments(OptimizerArguments, BaseTrainingArguments):
  90. statistics_expiration: float = field(
  91. default=600, metadata={"help": "Statistics will be removed if not updated in this many seconds"}
  92. )
  93. backup_every_steps: int = field(
  94. default=10, metadata={"help": "Frequency of backups to restore from in case of encountering NaN values"}
  95. )
  96. @dataclass
  97. class DatasetArguments:
  98. dataset_path: Optional[str] = field(
  99. default="data/albert_tokenized_wikitext", metadata={"help": "Path to the tokenized dataset"}
  100. )
  101. tokenizer_path: Optional[str] = field(default="data/tokenizer", metadata={"help": "Path to the tokenizer"})
  102. config_path: Optional[str] = field(
  103. default="https://s3.amazonaws.com/models.huggingface.co/bert/albert-large-v2-config.json",
  104. metadata={"help": "Path to the model config"},
  105. )
  106. cache_dir: Optional[str] = field(default="data", metadata={"help": "Path to the cache"})
  107. @dataclass
  108. class AlbertTrainingArguments(TrainingArguments):
  109. dataloader_num_workers: int = 4
  110. per_device_train_batch_size: int = 4
  111. per_device_eval_batch_size: int = 4
  112. gradient_accumulation_steps: int = 2
  113. seq_length: int = 512
  114. total_steps: int = 125_000 # please note: this only affects the learning rate schedule
  115. learning_rate: float = 0.00176
  116. warmup_steps: int = 5000
  117. adam_epsilon: float = 1e-6
  118. weight_decay: float = 0.01
  119. max_grad_norm: float = 1.0
  120. clamp_value: float = 10000.0
  121. fp16: bool = True
  122. fp16_opt_level: str = "O2"
  123. do_train: bool = True
  124. do_eval: bool = False
  125. logging_dir: str = "logs"
  126. output_dir: str = "outputs"
  127. logging_steps: int = 100
  128. logging_first_step: bool = True
  129. overwrite_output_dir: bool = True
  130. save_total_limit: int = 2
  131. save_steps: int = 500
  132. max_steps: int = 10 ** 30 # meant as "peer should compute gradients forever"