run_training_monitor.py 8.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227
  1. #!/usr/bin/env python
  2. import logging
  3. import time
  4. from dataclasses import asdict, dataclass, field
  5. from ipaddress import ip_address
  6. from typing import Optional
  7. import requests
  8. import torch
  9. import wandb
  10. from torch_optimizer import Lamb
  11. from transformers import AlbertConfig, AlbertForPreTraining, HfArgumentParser
  12. import hivemind
  13. import utils
  14. from arguments import AveragerArguments, BaseTrainingArguments, CollaborativeOptimizerArguments
  15. logger = logging.getLogger(__name__)
  16. @dataclass
  17. class TrainingMonitorArguments(BaseTrainingArguments):
  18. """
  19. Note: You might want to have several initial peers so that if one dies,
  20. new workers still can join the collaboration via alive initial peers' addresses.
  21. Specify initial_peers argument for that purpose
  22. """
  23. use_google_dns: bool = field(
  24. default=False,
  25. metadata={
  26. "help": "Use Google DNS to determine the public IP address of this machine (and add it to --announce_maddrs)"
  27. },
  28. )
  29. refresh_period: float = field(default=30, metadata={"help": "Period (in seconds) for fetching the keys from DHT"})
  30. wandb_project: Optional[str] = field(
  31. default=None, metadata={"help": "Name of Weights & Biases project to report the training progress to"}
  32. )
  33. save_checkpoint_step_interval: int = field(
  34. default=5, metadata={"help": "Frequency (in steps) of fetching and saving state from peers"}
  35. )
  36. model_config_path: str = field(
  37. default="https://s3.amazonaws.com/models.huggingface.co/bert/albert-large-v2-config.json",
  38. metadata={"help": "Path to the model config"},
  39. )
  40. repo_path: Optional[str] = field(
  41. default=None, metadata={"help": "Path to local repository to store the model and optimizer states"}
  42. )
  43. repo_url: Optional[str] = field(
  44. default=None, metadata={"help": "URL of Hugging Face Hub repository to upload the model and optimizer states"}
  45. )
  46. upload_interval: Optional[float] = field(
  47. default=None, metadata={"help": "Frequency (in seconds) of uploading the model to Hub"}
  48. )
  49. store_checkpoins: bool = field(default=False, metadata={"help": "If True, enables CheckpointHandler"})
  50. class CheckpointHandler:
  51. def __init__(
  52. self,
  53. monitor_args: TrainingMonitorArguments,
  54. collab_optimizer_args: CollaborativeOptimizerArguments,
  55. averager_args: AveragerArguments,
  56. dht: hivemind.DHT,
  57. ):
  58. self.save_checkpoint_step_interval = monitor_args.save_checkpoint_step_interval
  59. self.repo_path = monitor_args.repo_path
  60. self.repo_url = monitor_args.repo_url
  61. self.upload_interval = monitor_args.upload_interval
  62. self.previous_step = -1
  63. config = AlbertConfig.from_pretrained(monitor_args.model_config_path)
  64. self.model = AlbertForPreTraining(config)
  65. no_decay = ["bias", "LayerNorm.weight"]
  66. optimizer_grouped_parameters = [
  67. {
  68. "params": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay)],
  69. "weight_decay": 0.01,
  70. },
  71. {
  72. "params": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay)],
  73. "weight_decay": 0.0,
  74. },
  75. ]
  76. opt = Lamb(
  77. optimizer_grouped_parameters,
  78. lr=0.00176,
  79. weight_decay=0.01,
  80. clamp_value=10000.0,
  81. debias=True,
  82. )
  83. adjusted_target_batch_size = collab_optimizer_args.target_batch_size - collab_optimizer_args.batch_size_lead
  84. self.collaborative_optimizer = hivemind.CollaborativeOptimizer(
  85. opt=opt,
  86. dht=dht,
  87. prefix=experiment_prefix,
  88. compression_type=hivemind.Float16Compression(),
  89. bandwidth=collab_optimizer_args.bandwidth,
  90. target_batch_size=adjusted_target_batch_size,
  91. client_mode=collab_optimizer_args.client_mode,
  92. verbose=True,
  93. start=True,
  94. **asdict(averager_args),
  95. )
  96. self.previous_timestamp = time.time()
  97. def is_time_to_save_state(self, cur_step):
  98. if self.save_checkpoint_step_interval is None:
  99. return False
  100. elif cur_step - self.previous_step >= self.save_checkpoint_step_interval:
  101. return True
  102. else:
  103. return False
  104. def save_state(self, cur_step):
  105. logger.info("Saving state from peers")
  106. self.collaborative_optimizer.load_state_from_peers()
  107. self.previous_step = cur_step
  108. def is_time_to_upload(self):
  109. if self.repo_path is None:
  110. return False
  111. elif time.time() - self.previous_timestamp >= self.upload_interval:
  112. return True
  113. else:
  114. return False
  115. def upload_checkpoint(self, current_loss):
  116. logger.info("Saving optimizer")
  117. torch.save(self.collaborative_optimizer.opt.state_dict(), f"{self.repo_path}/optimizer_state.pt")
  118. self.previous_timestamp = time.time()
  119. logger.info("Started uploading to Model Hub")
  120. self.model.push_to_hub(
  121. repo_name=self.repo_path,
  122. repo_url=self.repo_url,
  123. commit_message=f"Step {current_step}, loss {current_loss:.3f}",
  124. )
  125. logger.info("Finished uploading to Model Hub")
  126. if __name__ == "__main__":
  127. parser = HfArgumentParser((TrainingMonitorArguments, CollaborativeOptimizerArguments, AveragerArguments))
  128. monitor_args, collab_optimizer_args, averager_args = parser.parse_args_into_dataclasses()
  129. if monitor_args.use_google_dns:
  130. request = requests.get("https://api.ipify.org")
  131. request.raise_for_status()
  132. address = request.text
  133. logger.info(f"Received public IP address of this machine: {address}")
  134. version = ip_address(address).version
  135. monitor_args.announce_maddrs += [f"/ip{version}/{address}/tcp/0"]
  136. experiment_prefix = monitor_args.experiment_prefix
  137. validators, local_public_key = utils.make_validators(experiment_prefix)
  138. dht = hivemind.DHT(
  139. start=True,
  140. initial_peers=monitor_args.initial_peers,
  141. record_validators=validators,
  142. use_ipfs=monitor_args.use_ipfs,
  143. host_maddrs=monitor_args.host_maddrs,
  144. announce_maddrs=monitor_args.announce_maddrs,
  145. identity_path=monitor_args.identity_path,
  146. )
  147. utils.log_visible_maddrs(dht.get_visible_maddrs(), only_p2p=monitor_args.use_ipfs)
  148. if monitor_args.wandb_project is not None:
  149. wandb.init(project=monitor_args.wandb_project)
  150. current_step = 0
  151. if monitor_args.store_checkpoins:
  152. checkpoint_handler = CheckpointHandler(monitor_args, collab_optimizer_args, averager_args, dht)
  153. while True:
  154. metrics_dict = dht.get(experiment_prefix + "_metrics", latest=True)
  155. if metrics_dict is not None:
  156. metrics_dict = metrics_dict.value
  157. metrics = [utils.LocalMetrics.parse_obj(metrics_dict[peer].value) for peer in metrics_dict]
  158. latest_step = max(item.step for item in metrics)
  159. if latest_step != current_step:
  160. logger.debug(f"Got metrics from {len(metrics)} peers")
  161. for i, metrics_for_peer in enumerate(metrics):
  162. logger.debug(f"{i} peer {metrics_for_peer}")
  163. current_step = latest_step
  164. alive_peers = 0
  165. sum_loss = 0
  166. num_samples = 0
  167. sum_perf = 0
  168. sum_mini_steps = 0
  169. for item in metrics:
  170. sum_loss += item.loss
  171. alive_peers += 1
  172. sum_perf += item.samples_per_second
  173. num_samples += item.samples_accumulated
  174. sum_mini_steps += item.mini_steps
  175. current_loss = sum_loss / sum_mini_steps
  176. logger.info(f"Step #{current_step}\tloss = {current_loss:.5f}")
  177. if monitor_args.wandb_project is not None:
  178. wandb.log(
  179. {
  180. "loss": current_loss,
  181. "alive peers": alive_peers,
  182. "samples": num_samples,
  183. "performance": sum_perf,
  184. "step": latest_step,
  185. }
  186. )
  187. if monitor_args.store_checkpoins:
  188. if checkpoint_handler.is_time_to_save_state(current_step):
  189. checkpoint_handler.save_state(current_step)
  190. if checkpoint_handler.is_time_to_upload():
  191. checkpoint_handler.upload_checkpoint(current_loss)
  192. logger.debug("Peer is still alive...")
  193. time.sleep(monitor_args.refresh_period)