123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172 |
- import asyncio
- import grpc
- import numpy as np
- import pytest
- import torch
- import hivemind
- from hivemind.client.expert import DUMMY
- from test_utils.run_server import background_server
- def test_moe():
- all_expert_uids = [f'ffn.{np.random.randint(0, 3)}.{np.random.randint(0, 3)}.{np.random.randint(0, 3)}'
- for _ in range(20)]
- with background_server(expert_uids=all_expert_uids, device='cpu', expert_cls='ffn',
- num_handlers=1, hidden_dim=16) as (server_endpoint, dht_endpoint):
- dht = hivemind.DHT(start=True, expiration=999, initial_peers=[dht_endpoint])
- # declare expert uids. Server *should* declare them by itself, but it takes time.
- assert all(dht.declare_experts(all_expert_uids, endpoint=server_endpoint))
- dmoe = hivemind.RemoteMixtureOfExperts(
- in_features=16, grid_size=(32, 32, 32), dht=dht, k_best=3, uid_prefix='ffn')
- for i in range(10):
- out = dmoe(torch.randn(10, 16))
- out.sum().backward()
- def test_call_many():
- k_min = 1
- timeout_after_k_min = None
- backward_k_min = 1
- forward_timeout = None
- backward_timeout = None
- rtol = 1e-3
- atol = 1e-6
- with background_server(num_experts=5, device='cpu', expert_cls='ffn', num_handlers=8, hidden_dim=64,
- no_optimizer=True, no_dht=True) as (server_endpoint, dht_endpoint):
- inputs = torch.randn(4, 64, requires_grad=True)
- inputs_clone = inputs.clone().detach().requires_grad_(True)
- e0, e1, e2, e3, e4 = [hivemind.RemoteExpert(f'expert.{i}', server_endpoint) for i in range(5)]
- e5 = hivemind.RemoteExpert(f'thisshouldnotexist', '127.0.0.1:80')
- mask, expert_outputs = hivemind.client.moe._RemoteCallMany.apply(
- DUMMY, [[e0, e1, e2], [e2, e4], [e1, e5, e3], []],
- k_min, backward_k_min, timeout_after_k_min, forward_timeout, backward_timeout,
- asyncio.new_event_loop(), inputs
- )
- assert mask.shape == (4, 3)
- assert expert_outputs.shape == (4, 3, 64)
- assert np.all(mask.data.numpy() == np.array([[True, True, True],
- [True, True, False],
- [True, False, True],
- [False, False, False]])), f"Incorrect mask, {mask}"
- reference_outputs = torch.zeros_like(expert_outputs)
- reference_outputs[0, 0] = e0(inputs_clone[0:1])
- reference_outputs[0, 1] = e1(inputs_clone[0:1])
- reference_outputs[0, 2] = e2(inputs_clone[0:1])
- reference_outputs[1, 0] = e2(inputs_clone[1:2])
- reference_outputs[1, 1] = e4(inputs_clone[1:2])
- reference_outputs[2, 0] = e1(inputs_clone[2:3])
- reference_outputs[2, 2] = e3(inputs_clone[2:3])
- assert torch.allclose(expert_outputs, reference_outputs, rtol, atol)
- proj = torch.randn(4, 64)
- loss = (expert_outputs[(0, 1, 1, 2), (0, 2, 1, 0)] * proj).sum()
- loss.backward()
- our_grad = inputs.grad.data.cpu().clone()
- reference_loss = (reference_outputs[(0, 1, 1, 2), (0, 2, 1, 0)] * proj).sum()
- reference_loss.backward()
- reference_grad = inputs_clone.grad.data.cpu().clone()
- assert torch.allclose(our_grad, reference_grad, rtol, atol)
- def test_remote_module_call():
- with background_server(num_experts=1, device='cpu', expert_cls='ffn', num_handlers=1, hidden_dim=1024,
- no_optimizer=True, no_dht=True) as (server_endpoint, dht_endpoint):
- real_expert = hivemind.RemoteExpert('expert.0', server_endpoint)
- fake_expert = hivemind.RemoteExpert('oiasfjiasjf', server_endpoint)
- out1 = real_expert(torch.randn(1, 1024))
- assert out1.shape == (1, 1024)
- dummy_x = torch.randn(3, 1024, requires_grad=True)
- out3 = real_expert(dummy_x)
- assert out3.shape == (3, 1024)
- out3_again = real_expert(dummy_x[1:])
- assert torch.allclose(out3_again, out3[1:])
- out3_again.norm().backward()
- assert dummy_x.grad is not None and dummy_x.grad.norm() > 0
- with pytest.raises(grpc.RpcError):
- real_expert(torch.randn(3, 11))
- with pytest.raises(grpc.RpcError):
- fake_expert(dummy_x)
- def test_moe_beam_search():
- all_expert_uids = [f'ffn.{5 + i}.{10 + j}.{15 + k}' for i in range(10) for j in range(10) for k in range(10)]
- dht = hivemind.DHT(start=True, expiration=999)
- assert all(dht.declare_experts(all_expert_uids, endpoint='fake-endpoint'))
- dmoe = hivemind.RemoteMixtureOfExperts(
- in_features=32, grid_size=(32, 32, 32), dht=dht, k_best=4, uid_prefix='ffn')
- for i in range(25):
- input = torch.randn(32)
- grid_scores = dmoe.proj(input).split_with_sizes(dmoe.grid_size, dim=-1)
- chosen_experts = dmoe.loop.run_until_complete(dmoe.beam_search(grid_scores, k_best=dmoe.k_best))
- chosen_scores = dmoe.compute_expert_scores([dim_scores[None] for dim_scores in grid_scores],
- [chosen_experts])[0]
- all_scores = dmoe.compute_expert_scores([dim_scores[None] for dim_scores in grid_scores],
- [[hivemind.RemoteExpert(uid, '') for uid in all_expert_uids]])[0]
- true_best_scores = sorted(all_scores.cpu().detach().numpy(), reverse=True)[:len(chosen_experts)]
- our_best_scores = list(chosen_scores.cpu().detach().numpy())
- assert np.allclose(true_best_scores, our_best_scores)
- def test_determinism():
- rtol = 0
- atol = 1e-6
- xx = torch.randn(32, 1024, requires_grad=True)
- mask = torch.randint(0, 1, (32, 1024))
- with background_server(num_experts=1, device='cpu', expert_cls='det_dropout', num_handlers=1,
- no_optimizer=True, no_dht=True) as (server_endpoint, dht_endpoint):
- expert = hivemind.RemoteExpert(uid=f'expert.0', endpoint=server_endpoint)
- out = expert(xx, mask)
- out_rerun = expert(xx, mask)
- grad, = torch.autograd.grad(out.sum(), xx, retain_graph=True)
- grad_rerun, = torch.autograd.grad(out_rerun.sum(), xx, retain_graph=True)
- assert torch.allclose(out, out_rerun, rtol, atol), "Dropout layer outputs are non-deterministic."
- assert torch.allclose(grad, grad_rerun, rtol, atol), "Gradients are non-deterministic."
- def test_compute_expert_scores():
- try:
- dht = hivemind.DHT(start=True)
- moe = hivemind.client.moe.RemoteMixtureOfExperts(
- dht=dht, in_features=1024, grid_size=(40,), k_best=4, k_min=1, timeout_after_k_min=1,
- uid_prefix='expert')
- gx, gy = torch.randn(4, 5, requires_grad=True), torch.randn(4, 3, requires_grad=True)
- ii = [[4, 0, 2], [3, 1, 1, 1, 3], [0], [3, 2]]
- jj = [[2, 2, 1], [0, 1, 2, 0, 1], [0], [1, 2]]
- batch_experts = [
- [hivemind.RemoteExpert(uid=f'expert.{ii[batch_i][expert_i]}.{jj[batch_i][expert_i]}', endpoint="[::]:1337")
- for expert_i in range(len(ii[batch_i]))]
- for batch_i in range(len(ii))
- ] # note: these experts do not exists on server, we use them only to test moe compute_expert_scores
- logits = moe.compute_expert_scores([gx, gy], batch_experts)
- torch.softmax(logits, dim=-1).norm(dim=-1).mean().backward()
- assert gx.grad.norm().item() > 0 and gy.grad.norm().item(), "compute_expert_scores didn't backprop"
- for batch_i in range(len(ii)):
- for expert_i in range(len(ii[batch_i])):
- assert torch.allclose(logits[batch_i, expert_i],
- gx[batch_i, ii[batch_i][expert_i]] + gy[batch_i, jj[batch_i][expert_i]]), \
- "compute_expert_scores returned incorrect score"
- finally:
- dht.shutdown()
|