benchmark_throughput.py 7.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151
  1. import argparse
  2. import multiprocessing as mp
  3. import random
  4. import sys
  5. import time
  6. import torch
  7. from test_utils import layers, print_device_info, increase_file_limit
  8. import hivemind
  9. from hivemind import find_open_port
  10. def client_process(can_start, benchmarking_failed, port, num_experts, batch_size, hid_dim, num_batches, backprop=True):
  11. torch.set_num_threads(1)
  12. can_start.wait()
  13. experts = [hivemind.RemoteExpert(f"expert{i}", endpoint=f"{hivemind.LOCALHOST}:{port}") for i in range(num_experts)]
  14. try:
  15. dummy_batch = torch.randn(batch_size, hid_dim)
  16. for batch_i in range(num_batches):
  17. expert = random.choice(experts)
  18. out = expert(dummy_batch)
  19. if backprop:
  20. out.sum().backward()
  21. except BaseException as e:
  22. benchmarking_failed.set()
  23. raise e
  24. def benchmark_throughput(num_experts=16, num_handlers=None, num_clients=128, num_batches_per_client=16,
  25. expert_cls='ffn', hid_dim=1024, batch_size=2048, max_batch_size=None, backprop=True,
  26. device=None, port=None):
  27. assert not hasattr(torch.cuda, 'is_initialized') or not torch.cuda.is_initialized() \
  28. or torch.device(device) == torch.device('cpu')
  29. assert expert_cls in layers.name_to_block
  30. port = port or find_open_port()
  31. max_batch_size = max_batch_size or batch_size * 4
  32. num_handlers = max(1, num_handlers or num_clients // 2)
  33. benchmarking_failed = mp.Event()
  34. can_start = mp.Event()
  35. timestamps = dict(started=time.perf_counter())
  36. try:
  37. # start clients and await server
  38. # Note: client processes must be launched BEFORE touching gpu, even torch.cuda.is_available can cause trouble
  39. clients = [
  40. mp.Process(
  41. target=client_process, name=f'client_process-{i}',
  42. args=(can_start, benchmarking_failed, port, num_experts, batch_size,
  43. hid_dim, num_batches_per_client, backprop))
  44. for i in range(num_clients)]
  45. for client in clients:
  46. client.daemon = True
  47. client.start()
  48. timestamps['launched_clients'] = timestamps['began_launching_server'] = time.perf_counter()
  49. # start server
  50. device = device or ('cuda' if torch.cuda.is_available() else 'cpu')
  51. experts = {}
  52. for i in range(num_experts):
  53. expert = torch.jit.script(layers.name_to_block[expert_cls](hid_dim))
  54. experts[f'expert{i}'] = hivemind.ExpertBackend(name=f'expert{i}',
  55. expert=expert, opt=torch.optim.Adam(expert.parameters()),
  56. args_schema=(hivemind.BatchTensorDescriptor(hid_dim),),
  57. outputs_schema=hivemind.BatchTensorDescriptor(hid_dim),
  58. max_batch_size=max_batch_size,
  59. )
  60. timestamps['created_experts'] = time.perf_counter()
  61. server = hivemind.Server(None, experts, listen_on=f"{hivemind.LOCALHOST}:{port}",
  62. num_connection_handlers=num_handlers, device=device)
  63. server.start()
  64. server.ready.wait()
  65. timestamps['server_ready'] = time.perf_counter()
  66. can_start.set()
  67. for client in clients:
  68. client.join()
  69. timestamps['clients_finished'] = time.perf_counter()
  70. except BaseException as e:
  71. benchmarking_failed.set()
  72. raise e
  73. finally:
  74. for client in clients:
  75. if client.is_alive():
  76. client.terminate()
  77. server.shutdown()
  78. timestamps['server_shutdown_finished'] = time.perf_counter()
  79. server.join()
  80. sys.stdout.flush()
  81. sys.stderr.flush()
  82. time_between = lambda key1, key2: \
  83. abs(timestamps[key2] - timestamps[key1]) if (key1 in timestamps and key2 in timestamps) else float('nan')
  84. total_examples = batch_size * num_clients * num_batches_per_client
  85. print('\n' * 3)
  86. print("Benchmark finished, status:" + ["Success", "Failure"][benchmarking_failed.is_set()])
  87. print(f"Server parameters: num_experts={num_experts}, num_handlers={num_handlers}, max_batch_size={max_batch_size},"
  88. f" expert_cls={expert_cls}, hid_dim={hid_dim}, device={device}")
  89. print(f"Client parameters: num_clients={num_clients}, num_batches_per_client={num_batches_per_client}, "
  90. f"batch_size={batch_size}, backprop={backprop}")
  91. print("Results: ")
  92. print(f"\tServer startup took {time_between('began_launching_server', 'server_ready') :.3f} s. "
  93. f"({time_between('began_launching_server', 'created_experts') :.3f} s. experts + "
  94. f"{time_between('created_experts', 'server_ready') :.3f} s. networking)")
  95. print(f"\tProcessed {total_examples} examples in {time_between('server_ready', 'clients_finished') :.3f}")
  96. print(f"\tThroughput for {'forward + backward' if backprop else 'forward'} passes: "
  97. f"{total_examples / time_between('server_ready', 'clients_finished') :.3f} samples / s.")
  98. print(f"\tBenchmarking took {time_between('started', 'server_shutdown_finished') :.3f} s.")
  99. if benchmarking_failed.is_set():
  100. print("Note: benchmark code failed, timing/memory results only indicate time till failure!")
  101. print_device_info(device)
  102. print(flush=True)
  103. assert not benchmarking_failed.is_set()
  104. if __name__ == "__main__":
  105. parser = argparse.ArgumentParser()
  106. parser.add_argument('--preset', type=str, default='default', required=False)
  107. parser.add_argument('--num_batches_per_client', type=int, default=16, required=False)
  108. args = parser.parse_args()
  109. if args.preset in ('default', 'ffn_forward_backward'):
  110. benchmark_throughput()
  111. elif args.preset == 'ffn_forward':
  112. benchmark_throughput(backprop=False, num_batches_per_client=args.num_batches_per_client)
  113. elif args.preset == 'ffn_small_batch':
  114. benchmark_throughput(backprop=False, num_experts=4, batch_size=32, max_batch_size=8192,
  115. num_batches_per_client=args.num_batches_per_client)
  116. elif args.preset == 'ffn_small_batch_512clients':
  117. benchmark_throughput(backprop=True, num_experts=1, batch_size=1, max_batch_size=8192,
  118. num_clients=512, num_batches_per_client=args.num_batches_per_client)
  119. elif args.preset == 'ffn_small_batch_512clients_32handlers':
  120. benchmark_throughput(backprop=True, num_experts=1, batch_size=1, max_batch_size=8192, num_handlers=32,
  121. num_clients=512, num_batches_per_client=args.num_batches_per_client)
  122. elif args.preset == 'ffn_massive':
  123. increase_file_limit()
  124. benchmark_throughput(backprop=False, num_clients=512, batch_size=512,
  125. max_batch_size=8192, num_batches_per_client=args.num_batches_per_client)
  126. elif args.preset == 'minimalistic':
  127. benchmark_throughput(num_experts=1, num_clients=1, num_handlers=1,
  128. num_batches_per_client=args.num_batches_per_client)
  129. elif args.preset == 'nop':
  130. benchmark_throughput(expert_cls='nop', backprop=False, num_batches_per_client=args.num_batches_per_client)
  131. else:
  132. raise ValueError(f"No such benchmark preset: {args.preset}")