run_training_monitor.py 8.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225
  1. #!/usr/bin/env python3
  2. import time
  3. from dataclasses import asdict, dataclass, field
  4. from ipaddress import ip_address
  5. from typing import Optional
  6. import requests
  7. import torch
  8. import wandb
  9. from torch_optimizer import Lamb
  10. from transformers import AlbertConfig, AlbertForPreTraining, HfArgumentParser
  11. import hivemind
  12. from hivemind.optim.state_averager import TrainingStateAverager
  13. from hivemind.utils.logging import get_logger, use_hivemind_log_handler
  14. import utils
  15. from arguments import AveragerArguments, BaseTrainingArguments, OptimizerArguments
  16. use_hivemind_log_handler("in_root_logger")
  17. logger = get_logger(__name__)
  18. @dataclass
  19. class TrainingMonitorArguments(BaseTrainingArguments):
  20. """
  21. Note: You might want to have several initial peers so that if one dies,
  22. new workers still can join the collaboration via alive initial peers' addresses.
  23. Specify initial_peers argument for that purpose
  24. """
  25. use_google_dns: bool = field(
  26. default=False,
  27. metadata={
  28. "help": "Use Google DNS to determine the public IP address of this machine (and add it to --announce_maddrs)"
  29. },
  30. )
  31. refresh_period: float = field(default=30, metadata={"help": "Period (in seconds) for fetching the keys from DHT"})
  32. wandb_project: Optional[str] = field(
  33. default=None, metadata={"help": "Name of Weights & Biases project to report the training progress to"}
  34. )
  35. save_checkpoint_step_interval: int = field(
  36. default=5, metadata={"help": "Frequency (in steps) of fetching and saving state from peers"}
  37. )
  38. model_config_path: str = field(
  39. default="https://s3.amazonaws.com/models.huggingface.co/bert/albert-large-v2-config.json",
  40. metadata={"help": "Path to the model config"},
  41. )
  42. repo_path: Optional[str] = field(
  43. default=None, metadata={"help": "Path to local repository to store the model and optimizer states"}
  44. )
  45. repo_url: Optional[str] = field(
  46. default=None, metadata={"help": "URL of Hugging Face Hub repository to upload the model and optimizer states"}
  47. )
  48. upload_interval: Optional[float] = field(
  49. default=None, metadata={"help": "Frequency (in seconds) of uploading the model to Hub"}
  50. )
  51. store_checkpoints: bool = field(default=False, metadata={"help": "If True, enables CheckpointHandler"})
  52. class CheckpointHandler:
  53. def __init__(
  54. self,
  55. monitor_args: TrainingMonitorArguments,
  56. optimizer_args: OptimizerArguments,
  57. averager_args: AveragerArguments,
  58. dht: hivemind.DHT,
  59. ):
  60. self.save_checkpoint_step_interval = monitor_args.save_checkpoint_step_interval
  61. self.repo_path = monitor_args.repo_path
  62. self.repo_url = monitor_args.repo_url
  63. self.upload_interval = monitor_args.upload_interval
  64. self.previous_step = -1
  65. config = AlbertConfig.from_pretrained(monitor_args.model_config_path)
  66. self.model = AlbertForPreTraining(config)
  67. no_decay = ["bias", "LayerNorm.weight"]
  68. optimizer_grouped_parameters = [
  69. {
  70. "params": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay)],
  71. "weight_decay": 0.01,
  72. },
  73. {
  74. "params": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay)],
  75. "weight_decay": 0.0,
  76. },
  77. ]
  78. opt = Lamb(
  79. optimizer_grouped_parameters,
  80. lr=0.00176,
  81. weight_decay=0.01,
  82. clamp_value=10000.0,
  83. debias=True,
  84. )
  85. self.state_averager = TrainingStateAverager(
  86. dht=dht,
  87. optimizer=opt,
  88. prefix=experiment_prefix,
  89. state_compression=hivemind.Float16Compression(),
  90. bandwidth=optimizer_args.bandwidth,
  91. client_mode=optimizer_args.client_mode,
  92. start=True,
  93. **asdict(averager_args),
  94. )
  95. self.previous_timestamp = time.time()
  96. def is_time_to_save_state(self, cur_step):
  97. if self.save_checkpoint_step_interval is None:
  98. return False
  99. elif cur_step - self.previous_step >= self.save_checkpoint_step_interval:
  100. return True
  101. else:
  102. return False
  103. def save_state(self, cur_step):
  104. logger.info("Saving state from peers")
  105. self.state_averager.load_state_from_peers()
  106. self.previous_step = cur_step
  107. def is_time_to_upload(self):
  108. if self.repo_path is None:
  109. return False
  110. elif time.time() - self.previous_timestamp >= self.upload_interval:
  111. return True
  112. else:
  113. return False
  114. def upload_checkpoint(self, current_loss):
  115. logger.info("Saving optimizer")
  116. torch.save(self.state_averager.optimizer.state_dict(), f"{self.repo_path}/optimizer_state.pt")
  117. self.previous_timestamp = time.time()
  118. logger.info("Started uploading to Model Hub")
  119. self.model.push_to_hub(
  120. repo_name=self.repo_path,
  121. repo_url=self.repo_url,
  122. commit_message=f"Step #{current_step}, loss {current_loss:.3f}",
  123. )
  124. logger.info("Finished uploading to Model Hub")
  125. if __name__ == "__main__":
  126. parser = HfArgumentParser((TrainingMonitorArguments, OptimizerArguments, AveragerArguments))
  127. monitor_args, optimizer_args, averager_args = parser.parse_args_into_dataclasses()
  128. if monitor_args.use_google_dns:
  129. request = requests.get("https://api.ipify.org")
  130. request.raise_for_status()
  131. address = request.text
  132. logger.info(f"Received public IP address of this machine: {address}")
  133. version = ip_address(address).version
  134. monitor_args.announce_maddrs += [f"/ip{version}/{address}/tcp/0"]
  135. experiment_prefix = monitor_args.experiment_prefix
  136. validators, local_public_key = utils.make_validators(experiment_prefix)
  137. dht = hivemind.DHT(
  138. start=True,
  139. initial_peers=monitor_args.initial_peers,
  140. record_validators=validators,
  141. use_ipfs=monitor_args.use_ipfs,
  142. host_maddrs=monitor_args.host_maddrs,
  143. announce_maddrs=monitor_args.announce_maddrs,
  144. identity_path=monitor_args.identity_path,
  145. )
  146. utils.log_visible_maddrs(dht.get_visible_maddrs(), only_p2p=monitor_args.use_ipfs)
  147. if monitor_args.wandb_project is not None:
  148. wandb.init(project=monitor_args.wandb_project)
  149. current_step = 0
  150. if monitor_args.store_checkpoints:
  151. checkpoint_handler = CheckpointHandler(monitor_args, optimizer_args, averager_args, dht)
  152. while True:
  153. metrics_dict = dht.get(experiment_prefix + "_metrics", latest=True)
  154. if metrics_dict is not None:
  155. metrics_dict = metrics_dict.value
  156. metrics = [utils.LocalMetrics.parse_obj(metrics_dict[peer].value) for peer in metrics_dict]
  157. latest_step = max(item.step for item in metrics)
  158. if latest_step != current_step:
  159. logger.debug(f"Got metrics from {len(metrics)} peers")
  160. for i, metrics_for_peer in enumerate(metrics):
  161. logger.debug(f"{i} peer {metrics_for_peer}")
  162. current_step = latest_step
  163. alive_peers = 0
  164. sum_loss = 0
  165. num_samples = 0
  166. sum_perf = 0
  167. sum_mini_steps = 0
  168. for item in metrics:
  169. sum_loss += item.loss
  170. alive_peers += 1
  171. sum_perf += item.samples_per_second
  172. num_samples += item.samples_accumulated
  173. sum_mini_steps += item.mini_steps
  174. current_loss = sum_loss / sum_mini_steps
  175. logger.info(f"Step #{current_step}\tloss = {current_loss:.5f}")
  176. if monitor_args.wandb_project is not None:
  177. wandb.log(
  178. {
  179. "loss": current_loss,
  180. "alive peers": alive_peers,
  181. "samples": num_samples,
  182. "performance": sum_perf,
  183. "step": latest_step,
  184. }
  185. )
  186. if monitor_args.store_checkpoints:
  187. if checkpoint_handler.is_time_to_save_state(current_step):
  188. checkpoint_handler.save_state(current_step)
  189. if checkpoint_handler.is_time_to_upload():
  190. checkpoint_handler.upload_checkpoint(current_loss)
  191. logger.debug("Peer is still alive...")
  192. time.sleep(monitor_args.refresh_period)