123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132 |
- from typing import Dict, Sequence, Any, Tuple, Union
- import torch
- from torch import nn
- from .task_pool import TaskPool
- from ..utils import nested_flatten, nested_pack, nested_compare, BatchTensorProto, DUMMY_BATCH_SIZE, nested_map
- class ExpertBackend(nn.Module):
- """
- ExpertBackend is a wrapper around torch module that allows it to run tasks asynchronously with TesseractRuntime
- By default, ExpertBackend handles three types of requests:
- - forward - receive inputs and compute outputs. Concurrent requests will be batched for better GPU utilization.
- - backward - receive gradients w.r.t. outputs, compute gradients w.r.t. inputs and **update expert**. Also batched.
- - get_info - return expert metadata. Not batched.
- :param expert: nn.Module to be wrapped into a backend. Arbitrary pytorch module with a few limitations:
- - Experts must always receive the same set of \*args and \*\*kwargs and produce output tensors of same type
- - All \*args, \*\*kwargs and outputs must be **tensors** where 0-th dimension represents to batch size
- - We recommend using experts that are ~invariant to the order in which they process batches
- :param opt: torch optimizer to be applied on every backward call
- :param args_schema: description of positional arguments to expert.forward, list of BatchTensorProto
- :param kwargs_schema: description of keyword arguments to expert.forward, dict of BatchTensorProto
- :param outputs_schema: description of outputs from expert.forward, nested structure of BatchTensorProto
- :param kwargs: extra parameters to be forwarded into TaskPool.__init__
- """
- def __init__(self, name: str, expert: nn.Module, opt: torch.optim.Optimizer, *,
- args_schema: Tuple[BatchTensorProto, ...] = None,
- kwargs_schema: Dict[str, BatchTensorProto] = None,
- outputs_schema: Union[BatchTensorProto, Tuple[BatchTensorProto, ...]] = None,
- **kwargs):
- super().__init__()
- self.expert, self.opt, self.name = expert, opt, name
- self.args_schema = args_schema = tuple(args_schema or ())
- self.kwargs_schema = kwargs_schema = dict(kwargs_schema or {})
- assert args_schema or kwargs_schema, "expert must receive at least one positional or keyword input." \
- " Did you forget to provide args_schema/kwargs_schema?"
- if outputs_schema is None:
- # run expert once to get outputs schema
- dummy_args = tuple(sample.make_empty(DUMMY_BATCH_SIZE) for sample in args_schema)
- dummy_kwargs = {key: sample.make_empty(DUMMY_BATCH_SIZE) for key, sample in kwargs_schema.items()}
- dummy_outputs = self.expert(*dummy_args, **dummy_kwargs)
- outputs_schema = nested_map(BatchTensorProto.from_tensor, dummy_outputs)
- self.outputs_schema = outputs_schema
- self.forward_schema = (self.args_schema, self.kwargs_schema)
- self.backward_schema = (self.forward_schema, self.outputs_schema) # original inputs and grad w.r.t. outputs
- self.forward_pool = TaskPool(self.forward, uid=f'{self.name}_forward', **kwargs)
- self.backward_pool = TaskPool(self.backward, uid=f'{self.name}_backward', **kwargs)
- def forward(self, *inputs: torch.Tensor) -> Tuple[torch.Tensor, ...]:
- """
- Apply forward pass to an aggregated batch of requests. Used by TesseractRuntime, do not call this manually;
- To submit a request for asynchronous processing, please use ``ExpertBackend.forward_pool.submit_task``.
- Subclassing:
- This method receives a sequence of torch tensors following ``nested_flatten(self.forward_schema)``;
- It should return gradients w.r.t. inputs that follow ``nested_flatten(self.outputs_schema)``;
- .. todo state - we recommend stateless but you can save state if you want. disable batchnorm track running stats
- """
- args, kwargs = nested_pack(inputs, structure=self.forward_schema)
- with torch.no_grad():
- outputs = self.expert(*args, **kwargs)
- # Note: TaskPool requires function to accept and return a flat tuple of values, we pack/unpack it on client side
- return tuple(nested_flatten(outputs))
- def backward(self, *inputs: torch.Tensor) -> Tuple[torch.Tensor, ...]:
- """
- Apply backward pass to an aggregated batch of requests. Used by TesseractRuntime, do not call this manually
- To submit a request for asynchronous processing, please use ``ExpertBackend.backward_pool.submit_task``.
- Subclassing:
- This method receives a sequence of torch tensors following ``nested_flatten(self.backward_schema)``;
- It should return gradients w.r.t. inputs that follow ``nested_flatten(self.forward_schema)``;
- TesseractRuntime doesn't guarantee that backward will be performed in the same order and for the same data
- as forward, so we recommend stateless backward pass that re-runs expert forward pass inside backward.
- .. todo state, randomness, etc
- Please make sure to call ``ExpertBackend.apply_gradients`` **within** this method, otherwise the expert will not train
- """
- (args, kwargs), grad_outputs = nested_pack(inputs, structure=self.backward_schema)
- with torch.enable_grad():
- args = [tensor.detach().requires_grad_(True) for tensor in args]
- kwargs = {input_key: tensor.detach().requires_grad_(True) for input_key, tensor in kwargs.items()}
- outputs = self.expert(*args, **kwargs)
- assert nested_compare(outputs, grad_outputs), "outputs and grad_outputs must have the same structure"
- outputs_flat = tuple(nested_flatten(outputs))
- grad_outputs_flat = tuple(map(
- lambda grad, out: grad.to(device=out.device, dtype=out.dtype, non_blocking=True),
- nested_flatten(grad_outputs), outputs_flat))
- torch.autograd.backward(outputs_flat, grad_tensors=grad_outputs_flat,
- create_graph=False, retain_graph=False)
- self.apply_gradients()
- return tuple(x.grad if isinstance(x.grad, torch.Tensor) else torch.zeros_like(x)
- for x in nested_flatten((args, kwargs)))
- def apply_gradients(self) -> None:
- """
- Train the expert for a single step. This method is called by ``ExpertBackend.backward`` after computing gradients.
- """
- self.opt.step()
- self.opt.zero_grad()
- def get_info(self) -> Dict[str, Any]:
- """ Get expert parameters and stats. Used by RemoteExpert to check shapes and for DMoE orchestration. """
- return dict(forward_schema=self.forward_schema, outputs_schema=self.outputs_schema,
- keyword_names=tuple(self.kwargs_schema.keys()))
- def get_pools(self) -> Sequence[TaskPool]:
- """ return all pools that should be processed by ``TesseractRuntime`` """
- return self.forward_pool, self.backward_pool
|