test_averaging.py 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537
  1. import random
  2. import time
  3. import numpy as np
  4. import pytest
  5. import torch
  6. import hivemind
  7. import hivemind.averaging.averager
  8. from hivemind.averaging.allreduce import AveragingMode
  9. from hivemind.averaging.key_manager import GroupKeyManager
  10. from hivemind.averaging.load_balancing import load_balance_peers
  11. from hivemind.p2p import PeerID
  12. from hivemind.proto.runtime_pb2 import CompressionType
  13. from test_utils.dht_swarms import launch_dht_instances
  14. @pytest.mark.forked
  15. @pytest.mark.asyncio
  16. async def test_key_manager():
  17. dht = hivemind.DHT(start=True)
  18. key_manager = GroupKeyManager(
  19. dht,
  20. prefix="test_averaging",
  21. initial_group_bits="10110",
  22. target_group_size=2,
  23. )
  24. alice = dht.peer_id
  25. bob = PeerID(b"bob")
  26. t = hivemind.get_dht_time()
  27. key = key_manager.current_key
  28. await key_manager.declare_averager(key, alice, expiration_time=t + 60)
  29. await key_manager.declare_averager(key, bob, expiration_time=t + 61)
  30. q1 = await key_manager.get_averagers(key, only_active=True)
  31. await key_manager.declare_averager(key, alice, expiration_time=t + 66)
  32. q2 = await key_manager.get_averagers(key, only_active=True)
  33. await key_manager.declare_averager(key, bob, expiration_time=t + 61, looking_for_group=False)
  34. q3 = await key_manager.get_averagers(key, only_active=True)
  35. q4 = await key_manager.get_averagers(key, only_active=False)
  36. q5 = await key_manager.get_averagers("nonexistent_key.0b0101", only_active=False)
  37. assert len(q1) == 2 and (alice, t + 60) in q1 and (bob, t + 61) in q1
  38. assert len(q2) == 2 and (alice, t + 66) in q2 and (bob, t + 61) in q2
  39. assert len(q3) == 1 and (alice, t + 66) in q3
  40. assert len(q4) == 2 and (alice, t + 66) in q4 and (bob, t + 61) in q2
  41. assert len(q5) == 0
  42. dht.shutdown()
  43. def _test_allreduce_once(n_clients, n_aux):
  44. n_peers = 4
  45. modes = (
  46. [AveragingMode.CLIENT] * n_clients
  47. + [AveragingMode.AUX] * n_aux
  48. + [AveragingMode.NODE] * (n_peers - n_clients - n_aux)
  49. )
  50. random.shuffle(modes)
  51. tensors1 = [torch.randn(123), torch.zeros(3)]
  52. tensors2 = [torch.rand(123), torch.ones(3)]
  53. tensors3 = [-torch.rand(123), torch.arange(3).to(torch.float32)]
  54. tensors4 = [torch.randn(123) ** 3, torch.arange(3).to(torch.float32) / 2]
  55. peer_tensors = [tensors1, tensors2, tensors3, tensors4]
  56. reference = [
  57. sum(tensors[i] for tensors, mode in zip(peer_tensors, modes) if mode != AveragingMode.AUX)
  58. / max(1, n_peers - n_aux)
  59. for i in range(len(tensors1))
  60. ]
  61. dht_instances = launch_dht_instances(len(peer_tensors))
  62. averagers = [
  63. hivemind.averaging.DecentralizedAverager(
  64. tensors,
  65. dht=dht,
  66. target_group_size=4,
  67. averaging_expiration=15,
  68. prefix="mygroup",
  69. client_mode=mode == AveragingMode.CLIENT,
  70. auxiliary=mode == AveragingMode.AUX,
  71. start=True,
  72. )
  73. for tensors, dht, mode in zip(peer_tensors, dht_instances, modes)
  74. ]
  75. futures = []
  76. for averager in averagers:
  77. futures.append(averager.step(wait=False))
  78. for future in futures:
  79. result = future.result()
  80. for averager in averagers:
  81. assert averager.peer_id in result
  82. for averager in averagers:
  83. if averager.mode != AveragingMode.AUX:
  84. with averager.get_tensors() as averaged_tensors:
  85. for ref, our in zip(reference, averaged_tensors):
  86. assert torch.allclose(ref, our, atol=1e-6)
  87. for process in averagers + dht_instances:
  88. process.shutdown()
  89. @pytest.mark.forked
  90. @pytest.mark.parametrize("n_clients", [0, 1, 2])
  91. @pytest.mark.parametrize("n_aux", [0, 1, 2])
  92. def test_allreduce_once(n_clients, n_aux):
  93. _test_allreduce_once(n_clients, n_aux)
  94. @pytest.mark.forked
  95. @pytest.mark.parametrize("n_clients, n_aux", [(0, 4), (1, 3), (0, 3)])
  96. def test_allreduce_once_edge_cases(n_clients, n_aux):
  97. _test_allreduce_once(n_clients, n_aux)
  98. @pytest.mark.forked
  99. def test_allreduce_weighted(n_client_mode_peers: int = 2):
  100. n_peers = 4
  101. client_modes = [True] * n_client_mode_peers + [False] * (n_peers - n_client_mode_peers)
  102. random.shuffle(client_modes)
  103. tensors1 = [torch.randn(123), torch.zeros(3)]
  104. tensors2 = [torch.rand(123), torch.ones(3)]
  105. tensors3 = [-torch.rand(123), torch.arange(3).to(torch.float32)]
  106. tensors4 = [torch.randn(123) ** 3, torch.arange(3).to(torch.float32) / 2]
  107. dht_instances = launch_dht_instances(4)
  108. averagers = [
  109. hivemind.averaging.DecentralizedAverager(
  110. tensors,
  111. dht=dht,
  112. target_group_size=4,
  113. averaging_expiration=15,
  114. prefix="mygroup",
  115. client_mode=client_mode,
  116. start=True,
  117. )
  118. for tensors, dht, client_mode in zip([tensors1, tensors2, tensors3, tensors4], dht_instances, client_modes)
  119. ]
  120. weights = list(map(float, np.random.rand(len(averagers)) * 10 + 0.01))
  121. reference = [
  122. (tensors1[i] * weights[0] + tensors2[i] * weights[1] + tensors3[i] * weights[2] + tensors4[i] * weights[3])
  123. / sum(weights)
  124. for i in range(len(tensors1))
  125. ]
  126. futures = []
  127. for averager, weight in zip(averagers, weights):
  128. futures.append(averager.step(weight=weight, wait=False))
  129. for future in futures:
  130. future.result()
  131. for future, averager in zip(futures, averagers):
  132. with averager.get_tensors() as averaged_tensors:
  133. for ref, our in zip(reference, averaged_tensors):
  134. assert torch.allclose(ref, our, atol=1e-6)
  135. for process in averagers + dht_instances:
  136. process.shutdown()
  137. @pytest.mark.forked
  138. def test_allreduce_compression():
  139. """this test ensures that compression works correctly when multiple tensors have different compression types"""
  140. tensors1 = [torch.linspace(0, 500, 1000) ** 0.5, torch.randn(1000)]
  141. tensors2 = [torch.linspace(300, 800, 1000) ** 0.5, torch.randn(1000)]
  142. results = {}
  143. FLOAT16, UINT8 = CompressionType.FLOAT16, CompressionType.UNIFORM_8BIT
  144. for compression_type_pair in [(FLOAT16, FLOAT16), (FLOAT16, UINT8), (UINT8, FLOAT16), (UINT8, UINT8)]:
  145. dht_instances = launch_dht_instances(2)
  146. averager1 = hivemind.averaging.DecentralizedAverager(
  147. [x.clone() for x in tensors1],
  148. dht=dht_instances[0],
  149. compression_type=compression_type_pair,
  150. client_mode=True,
  151. target_group_size=2,
  152. prefix="mygroup",
  153. start=True,
  154. )
  155. averager2 = hivemind.averaging.DecentralizedAverager(
  156. [x.clone() for x in tensors2],
  157. dht=dht_instances[1],
  158. compression_type=compression_type_pair,
  159. target_group_size=2,
  160. prefix="mygroup",
  161. start=True,
  162. )
  163. for future in averager1.step(wait=False), averager2.step(wait=False):
  164. future.result()
  165. with averager1.get_tensors() as averaged_tensors:
  166. results[compression_type_pair] = averaged_tensors
  167. for instance in [averager1, averager2] + dht_instances:
  168. instance.shutdown()
  169. assert torch.allclose(results[UINT8, FLOAT16][0], results[UINT8, UINT8][0])
  170. assert torch.allclose(results[UINT8, FLOAT16][1], results[FLOAT16, FLOAT16][1])
  171. assert torch.allclose(results[UINT8, UINT8][1], results[FLOAT16, UINT8][1])
  172. assert torch.allclose(results[FLOAT16, UINT8][0], results[FLOAT16, FLOAT16][0])
  173. assert not torch.allclose(results[UINT8, FLOAT16][1], results[UINT8, UINT8][1])
  174. assert not torch.allclose(results[UINT8, FLOAT16][0], results[FLOAT16, FLOAT16][0])
  175. assert not torch.allclose(results[UINT8, UINT8][0], results[FLOAT16, UINT8][0])
  176. assert not torch.allclose(results[FLOAT16, UINT8][1], results[FLOAT16, FLOAT16][1])
  177. reference = [(tensors1[i] + tensors2[i]) / 2 for i in range(len(tensors1))]
  178. for i in range(2):
  179. assert 0 < torch.mean(torch.square(results[FLOAT16, FLOAT16][i] - reference[i])).item() <= 1e-5
  180. assert 1e-5 < torch.mean(torch.square(results[UINT8, UINT8][i] - reference[i])).item() <= 1e-2
  181. def compute_mean_std(averagers, unbiased=True):
  182. results = []
  183. for averager in averagers:
  184. with averager.get_tensors() as tensors:
  185. results.append([tensor.clone() for tensor in tensors])
  186. results_stacked_per_tensor = list(map(torch.stack, zip(*results)))
  187. means = [stack.mean(dim=0) for stack in results_stacked_per_tensor]
  188. stds = [stack.std(dim=0, unbiased=unbiased) for stack in results_stacked_per_tensor]
  189. return means, stds
  190. @pytest.mark.forked
  191. def test_allreduce_grid():
  192. dht_instances = launch_dht_instances(8)
  193. averagers = [
  194. hivemind.averaging.DecentralizedAverager(
  195. averaged_tensors=[torch.randn(3)],
  196. dht=dht,
  197. target_group_size=2,
  198. prefix="mygroup",
  199. initial_group_bits=bin(i // 2)[2:].rjust(2, "0"),
  200. start=True,
  201. )
  202. for i, dht in enumerate(dht_instances)
  203. ]
  204. [means0], [stds0] = compute_mean_std(averagers)
  205. assert not torch.allclose(stds0, torch.zeros_like(stds0))
  206. prev_means, prev_stds = means0, stds0
  207. for i in range(5):
  208. step_futures = [averager.step(wait=False) for averager in averagers]
  209. groups = [future.result() for future in step_futures]
  210. [means], [stds] = compute_mean_std(averagers)
  211. assert torch.allclose(means, prev_means, atol=1e-6, rtol=0)
  212. assert all(len(group) == 2 for group in groups)
  213. if i <= 2:
  214. assert torch.all(torch.le(stds, prev_stds))
  215. else:
  216. assert torch.allclose(stds, torch.zeros_like(stds), atol=1e-6, rtol=0)
  217. for process in averagers + dht_instances:
  218. process.shutdown()
  219. @pytest.mark.forked
  220. def test_allgather(n_averagers=8, target_group_size=4):
  221. dht_instances = launch_dht_instances(n_averagers)
  222. averagers = [
  223. hivemind.averaging.DecentralizedAverager(
  224. [torch.ones(1)],
  225. dht=dht,
  226. target_group_size=target_group_size,
  227. averaging_expiration=15,
  228. prefix="mygroup",
  229. initial_group_bits="000",
  230. start=True,
  231. )
  232. for dht in dht_instances
  233. ]
  234. futures = []
  235. for i, averager in enumerate(averagers):
  236. futures.append(averager.step(wait=False, gather=dict(batch_size=123 + i, foo="bar")))
  237. reference_metadata = {
  238. averager.peer_id: dict(batch_size=123 + i, foo="bar") for i, averager in enumerate(averagers)
  239. }
  240. for future in futures:
  241. gathered = future.result()
  242. assert len(gathered) == target_group_size
  243. for peer_id in gathered:
  244. assert gathered[peer_id] == reference_metadata[peer_id]
  245. for process in averagers + dht_instances:
  246. process.shutdown()
  247. def get_cost(vector_size, partitions, bandwidths):
  248. return max(
  249. (vector_size - partitions[i] + (len(partitions) - 1) * partitions[i]) / max(bandwidths[i], 1e-9)
  250. for i in range(len(partitions))
  251. )
  252. def check_optimality(vector_size, bandwidths, ref_partitions):
  253. partitions = list(load_balance_peers(vector_size, bandwidths))
  254. assert get_cost(vector_size, partitions, bandwidths) <= get_cost(vector_size, ref_partitions, bandwidths)
  255. @pytest.mark.forked
  256. def test_load_balancing():
  257. check_optimality(60, np.array([0.25, 0.25, 0.25, 0.25]), [15, 15, 15, 15])
  258. check_optimality(1024, np.array([0.3, 0.5, 0.9]), [0, 255, 769])
  259. check_optimality(60, np.array([0.44, 0.33, 0.22]), [42, 18, 0])
  260. check_optimality(60, np.array([0.55, 0.44, 0.40]), [35, 16, 9])
  261. check_optimality(1024 * 1024, np.array([0.3, 0.5, 0.9, 0.6]), [0, 169327, 602629, 276620])
  262. check_optimality(1024 * 1024, np.array([0.0, 0.5, 0.0, 0.6]), [0, 428963, 0, 619613])
  263. assert load_balance_peers(60, np.array([0.55, 0.44, 0.40]), min_size=10) == (41, 19, 0)
  264. assert load_balance_peers(60, np.array([0.32, 0.55, 0.44]), min_size=10) == (0, 40, 20)
  265. assert load_balance_peers(2, np.array([0.55, 0.20, 0.44]), min_size=10) == (1, 0, 1)
  266. assert load_balance_peers(1, np.array([0.55, 0.20, 0.44]), min_size=10) == (1, 0, 0)
  267. assert load_balance_peers(100, (None, None)) == (50, 50)
  268. assert load_balance_peers(100, (None, None, None, None, None)) == (20, 20, 20, 20, 20)
  269. assert load_balance_peers(100, (0, 0, 0, None, None)) == (0, 0, 0, 50, 50)
  270. with pytest.raises(AssertionError):
  271. load_balance_peers(100, (0, 0, 0))
  272. for i in range(10):
  273. vector_size = np.random.randint(1, 1024 ** 3)
  274. num_peers = np.random.randint(1, 256)
  275. scale = 1e-9 + np.random.rand() * 1e5
  276. bandwidths = np.random.rand(num_peers) * scale + 1e-6
  277. min_size = np.random.choice([0, np.random.randint(0, vector_size // 10)])
  278. assignment = load_balance_peers(vector_size, bandwidths, min_size)
  279. assert np.sum(assignment) == vector_size
  280. assert np.min(assignment) >= 0
  281. @pytest.mark.forked
  282. def test_too_few_peers():
  283. dht_instances = launch_dht_instances(4)
  284. averagers = [
  285. hivemind.averaging.DecentralizedAverager(
  286. averaged_tensors=[torch.randn(3)],
  287. dht=dht,
  288. target_group_size=2,
  289. averaging_expiration=1,
  290. request_timeout=0.5,
  291. prefix="mygroup",
  292. initial_group_bits=bin(i)[2:].rjust(3, "0"),
  293. start=True,
  294. )
  295. for i, dht in enumerate(dht_instances)
  296. ]
  297. step_futures = [averager.step(wait=False) for averager in averagers]
  298. for future in step_futures:
  299. assert len(future.result()) == 2
  300. for process in averagers + dht_instances:
  301. process.shutdown()
  302. @pytest.mark.skip(
  303. reason="The current implementation of elasticity (multi-stage averaging when num_peers > ~3 * target_group_size) "
  304. "is incorrect (TODO @justheuristic)"
  305. )
  306. @pytest.mark.forked
  307. def test_overcrowded(num_peers=16):
  308. dht_instances = launch_dht_instances(num_peers)
  309. averagers = [
  310. hivemind.averaging.DecentralizedAverager(
  311. averaged_tensors=[torch.randn(3)],
  312. dht=dht,
  313. target_group_size=2,
  314. averaging_expiration=1,
  315. request_timeout=0.5,
  316. prefix="mygroup",
  317. initial_group_bits="",
  318. start=True,
  319. )
  320. for dht in dht_instances
  321. ]
  322. for _ in range(5):
  323. step_futures = [averager.step(wait=False, timeout=5) for averager in averagers]
  324. assert sum(len(future.result() or []) == 2 for future in step_futures) >= len(averagers) - 1
  325. for process in averagers + dht_instances:
  326. process.shutdown()
  327. @pytest.mark.forked
  328. def test_load_state_from_peers():
  329. num_calls = 0
  330. super_metadata = dict(x=123)
  331. super_tensors = (torch.randn(3), torch.randint(0, 5, (3,)))
  332. class TestAverager(hivemind.averaging.DecentralizedAverager):
  333. def get_current_state(self):
  334. """
  335. Get current state and send it to a peer. executed in the host process. Meant to be overriden.
  336. :returns: a tuple of (serializable_small_metadata, sequence of torch tensors)
  337. """
  338. nonlocal num_calls, super_metadata, super_tensors
  339. num_calls += 1
  340. return super_metadata, super_tensors
  341. dht_instances = launch_dht_instances(2)
  342. averager1 = TestAverager(
  343. [torch.randn(3), torch.rand(5)],
  344. dht=dht_instances[0],
  345. start=True,
  346. prefix="demo-run",
  347. target_group_size=2,
  348. )
  349. dht_instances[1].get("demo-run.all_averagers")
  350. averager2 = TestAverager(
  351. [torch.randn(3), torch.rand(5)],
  352. dht=dht_instances[1],
  353. start=True,
  354. prefix="demo-run",
  355. target_group_size=2,
  356. )
  357. assert num_calls == 0
  358. got_metadata, got_tensors = averager2.load_state_from_peers()
  359. assert num_calls == 1
  360. assert got_metadata == super_metadata
  361. assert all(map(torch.allclose, got_tensors, super_tensors))
  362. super_metadata["y"] = 123
  363. super_tensors[1][2] = 9
  364. assert num_calls == 1
  365. assert got_metadata != super_metadata
  366. assert not all(map(torch.allclose, got_tensors, super_tensors))
  367. got_metadata, got_tensors = averager2.load_state_from_peers()
  368. assert num_calls == 2
  369. assert got_metadata == super_metadata
  370. assert all(map(torch.allclose, got_tensors, super_tensors))
  371. averager1.allow_state_sharing = False
  372. assert averager2.load_state_from_peers() is None
  373. averager1.allow_state_sharing = True
  374. got_metadata, got_tensors = averager2.load_state_from_peers()
  375. assert num_calls == 3
  376. assert got_metadata == super_metadata
  377. for instance in [averager1, averager2] + dht_instances:
  378. instance.shutdown()
  379. @pytest.mark.forked
  380. def test_getset_bits():
  381. dht = hivemind.DHT(start=True)
  382. averager = hivemind.averaging.DecentralizedAverager(
  383. [torch.randn(3)],
  384. dht=dht,
  385. start=True,
  386. prefix="test_prefix",
  387. target_group_size=2,
  388. )
  389. averager.set_group_bits("00101011101010")
  390. assert averager.get_group_bits() == "00101011101010"
  391. @pytest.mark.forked
  392. def test_training_averager(n_steps: int = 10, n_dims: int = 16):
  393. torch.manual_seed(42)
  394. dht_instances = launch_dht_instances(2)
  395. common_kwargs = {
  396. "start": True,
  397. "prefix": "demo-run",
  398. "target_group_size": 2,
  399. }
  400. x1 = torch.randn(n_dims, requires_grad=True)
  401. opt1 = torch.optim.Adam([x1], lr=0.05)
  402. averager1 = hivemind.averaging.TrainingAverager(
  403. opt1,
  404. average_gradients=True,
  405. average_parameters=True,
  406. average_opt_statistics=["exp_avg_sq"],
  407. dht=dht_instances[0],
  408. **common_kwargs
  409. )
  410. x2 = torch.randn(n_dims, requires_grad=True)
  411. opt2 = torch.optim.Adam([x2], lr=0.05)
  412. averager2 = hivemind.averaging.TrainingAverager(
  413. opt2,
  414. average_gradients=True,
  415. average_parameters=True,
  416. average_opt_statistics=["exp_avg_sq"],
  417. dht=dht_instances[1],
  418. **common_kwargs
  419. )
  420. a = torch.ones(n_dims)
  421. for i in range(n_steps):
  422. opt1.zero_grad()
  423. opt2.zero_grad()
  424. (x1 - a).pow(2).sum().backward()
  425. (x2 - a).pow(2).sum().backward()
  426. opt1.step()
  427. opt2.step()
  428. with torch.no_grad():
  429. x_avg = 0.5 * (x1 + x2)
  430. grad_avg = 0.5 * (x1.grad + x2.grad)
  431. stats_avg = 0.5 * (opt1.state[x1]["exp_avg_sq"] + opt2.state[x2]["exp_avg_sq"])
  432. # we set wait=False in order to prevent deadlock, when averager1 locks and waits for averager2
  433. f1 = averager1.step(wait=False)
  434. f2 = averager2.step(wait=False)
  435. f1.result()
  436. f2.result()
  437. assert torch.allclose(x1, x_avg)
  438. assert torch.allclose(x2, x_avg)
  439. assert torch.allclose(x1.grad, grad_avg)
  440. assert torch.allclose(x2.grad, grad_avg)
  441. assert torch.allclose(opt1.state[x1]["exp_avg_sq"], stats_avg)
  442. assert torch.allclose(opt2.state[x2]["exp_avg_sq"], stats_avg)
  443. for instance in [averager1, averager2] + dht_instances:
  444. instance.shutdown()