1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283 |
- import codecs
- import glob
- import os
- import re
- import grpc_tools.protoc
- from pkg_resources import parse_requirements
- from setuptools import setup, find_packages
- from setuptools.command.develop import develop
- from setuptools.command.install import install
- def proto_compile(output_path):
- cli_args = ['grpc_tools.protoc',
- '--proto_path=hivemind/proto', f'--python_out={output_path}',
- f'--grpc_python_out={output_path}'] + glob.glob('hivemind/proto/*.proto')
- code = grpc_tools.protoc.main(cli_args)
- if code: # hint: if you get this error in jupyter, run in console for richer error message
- raise ValueError(f"{' '.join(cli_args)} finished with exit code {code}")
- # Make pb2 imports in generated scripts relative
- for script in glob.iglob(f'{output_path}/*.py'):
- with open(script, 'r+') as file:
- code = file.read()
- file.seek(0)
- file.write(re.sub(r'\n(import .+_pb2.*)', 'from . \\1', code))
- file.truncate()
- class ProtoCompileInstall(install):
- def run(self):
- proto_compile(os.path.join(self.build_lib, 'hivemind', 'proto'))
- super().run()
- class ProtoCompileDevelop(develop):
- def run(self):
- proto_compile(os.path.join('hivemind', 'proto'))
- super().run()
- here = os.path.abspath(os.path.dirname(__file__))
- with open('requirements.txt') as requirements_file:
- install_requires = [str(requirement) for requirement in parse_requirements(requirements_file)]
- # loading version from setup.py
- with codecs.open(os.path.join(here, 'hivemind/__init__.py'), encoding='utf-8') as init_file:
- version_match = re.search(r"^__version__ = ['\"]([^'\"]*)['\"]", init_file.read(), re.M)
- version_string = version_match.group(1)
- setup(
- name='hivemind',
- version=version_string,
- cmdclass={'install': ProtoCompileInstall, 'develop': ProtoCompileDevelop},
- description='Decentralized deep learning framework in pytorch.',
- long_description='Decentralized deep learning framework in pytorch. Built to train giant models on '
- 'thousands on volunteers across the world. ',
- author='Learning@home & contributors',
- author_email='mryabinin@hse.ru',
- url="https://github.com/learning-at-home/hivemind",
- packages=find_packages(exclude=['tests']),
- package_data={'hivemind': ['proto/*']},
- include_package_data=True,
- license='MIT',
- install_requires=install_requires,
- classifiers=[
- 'Development Status :: 4 - Beta',
- 'Intended Audience :: Developers',
- 'Intended Audience :: Science/Research',
- 'License :: OSI Approved :: MIT License',
- 'Programming Language :: Python :: 3',
- 'Programming Language :: Python :: 3.8',
- 'Topic :: Scientific/Engineering',
- 'Topic :: Scientific/Engineering :: Mathematics',
- 'Topic :: Scientific/Engineering :: Artificial Intelligence',
- 'Topic :: Software Development',
- 'Topic :: Software Development :: Libraries',
- 'Topic :: Software Development :: Libraries :: Python Modules',
- ],
- # What does your project relate to?
- keywords='pytorch, deep learning, machine learning, gpu, distributed computing, volunteer computing, dht',
- )
|