from typing import Dict, Sequence, Any, Tuple, Union import torch from torch import nn from .task_pool import TaskPool from ..utils import nested_flatten, nested_pack, nested_compare, BatchTensorProto, DUMMY_BATCH_SIZE, nested_map class ExpertBackend(nn.Module): def __init__(self, name: str, expert: nn.Module, opt: torch.optim.Optimizer, *, args_schema: Tuple[BatchTensorProto, ...] = None, kwargs_schema: Dict[str, BatchTensorProto] = None, outputs_schema: Union[BatchTensorProto, Tuple[BatchTensorProto, ...]] = None, **kwargs): """ ExpertBackend implements how a given expert processes tasks. By default, there are two tasks: * forward receives inputs and produces outputs * backward receives gradients w.r.t. outputs, computes gradients w.r.t. inputs and trains the expert All incoming tasks are grouped by type (forward/backward) and sent into the corresponding pool, where tasks are grouped into minibatches and prepared for processing on device; The results are dispatched to task authors with SharedFuture.set_result. :param expert: nn.Module to be wrapped into a backend. Arbitrary pytorch module with a few limitations: * Experts must always receive the same set of *args and **kwargs and produce output tensors of same type * All *args, **kwargs and outputs must be *tensors* where 0-th dimension represents to batch size * We recommend using experts that are ~invariant to the order in which they process batches :param opt: torch optimizer to be applied on every backward call :param args_schema: description of positional arguments to expert.forward, list of BatchTensorProto :param kwargs_schema: description of keyword arguments to expert.forward, dict of BatchTensorProto :param outputs_schema: description of outputs from expert.forward, nested structure of BatchTensorProto :param kwargs: extra parameters to be forwarded into TaskPool.__init__ """ super().__init__() self.expert, self.opt, self.name = expert, opt, name self.args_schema = args_schema = tuple(args_schema or ()) self.kwargs_schema = kwargs_schema = dict(kwargs_schema or {}) assert args_schema or kwargs_schema, "expert must receive at least one positional or keyword input." \ " Did you forget to provide args_schema/kwargs_schema?" if outputs_schema is None: # run expert once to get outputs schema dummy_args = tuple(sample.make_empty(DUMMY_BATCH_SIZE) for sample in args_schema) dummy_kwargs = {key: sample.make_empty(DUMMY_BATCH_SIZE) for key, sample in kwargs_schema.items()} dummy_outputs = self.expert(*dummy_args, **dummy_kwargs) outputs_schema = nested_map(BatchTensorProto.from_tensor, dummy_outputs) self.outputs_schema = outputs_schema self.forward_schema = (self.args_schema, self.kwargs_schema) self.backward_schema = (self.forward_schema, self.outputs_schema) # original inputs and grad w.r.t. outputs self.forward_pool = TaskPool(self.forward, uid=f'{self.name}_forward', **kwargs) self.backward_pool = TaskPool(self.backward, uid=f'{self.name}_backward', **kwargs) def forward(self, *inputs: torch.Tensor) -> Tuple[torch.Tensor, ...]: args, kwargs = nested_pack(inputs, structure=self.forward_schema) with torch.no_grad(): outputs = self.expert(*args, **kwargs) # Note: TaskPool requires function to accept and return a **list** of values, we pack/unpack it on client side return tuple(nested_flatten(outputs)) def backward(self, *inputs: torch.Tensor) -> Tuple[torch.Tensor, ...]: (args, kwargs), grad_outputs = nested_pack(inputs, structure=self.backward_schema) with torch.enable_grad(): args = [tensor.detach().requires_grad_(True) for tensor in args] kwargs = {input_key: tensor.detach().requires_grad_(True) for input_key, tensor in kwargs.items()} outputs = self.expert(*args, **kwargs) assert nested_compare(outputs, grad_outputs), "outputs and grad_outputs must have the same structure" outputs_flat = tuple(nested_flatten(outputs)) grad_outputs_flat = tuple(map( lambda grad, out: grad.to(device=out.device, dtype=out.dtype, non_blocking=True), nested_flatten(grad_outputs), outputs_flat)) torch.autograd.backward(outputs_flat, grad_tensors=grad_outputs_flat, create_graph=False, retain_graph=False) self.apply_gradients() return tuple(x.grad if isinstance(x.grad, torch.Tensor) else torch.zeros_like(x) for x in nested_flatten((args, kwargs))) def apply_gradients(self) -> None: self.opt.step() self.opt.zero_grad() def get_pools(self) -> Sequence[TaskPool]: return self.forward_pool, self.backward_pool def get_info(self) -> Dict[str, Any]: return dict(forward_schema=self.forward_schema, outputs_schema=self.outputs_schema, keyword_names=tuple(self.kwargs_schema.keys()))