import math import time import threading import argparse import torch import hivemind from hivemind.utils import LOCALHOST, increase_file_limit, get_logger from hivemind.proto import runtime_pb2 logger = get_logger(__name__) def sample_tensors(hid_size, num_layers): tensors = [] for i in range(num_layers): tensors.append(torch.randn(hid_size, 3 * hid_size)) tensors.append(torch.randn(3 * hid_size)) tensors.append(torch.randn(3 * hid_size)) tensors.append(torch.randn(hid_size, hid_size)) tensors.append(torch.ones(hid_size)) tensors.append(torch.zeros(hid_size)) tensors.append(torch.randn(hid_size, 4 * hid_size)) tensors.append(torch.randn(4 * hid_size)) tensors.append(torch.ones(4 * hid_size)) tensors.append(torch.randn(2, hid_size, hid_size, 2)) tensors.append(torch.randn(hid_size)) tensors.append(torch.randn(hid_size)) tensors.append(torch.randn(hid_size)) return tuple(tensors) def benchmark_averaging(num_peers: int, target_group_size: int, num_rounds: int, averaging_expiration: float, request_timeout: float, round_timeout: float, hid_size: int, num_layers: int, spawn_dtime: float): dht_root = hivemind.DHT(listen_on=f'{LOCALHOST}:*', start=True) num_groups = 2 ** int(round(math.log2(num_peers / target_group_size))) nbits = int(round(math.log2(num_groups))) peer_tensors = [sample_tensors(hid_size, num_layers) for _ in range(num_peers)] processes = {dht_root} lock_stats = threading.Lock() successful_steps = total_steps = 0 def run_averager(index): nonlocal successful_steps, total_steps, lock_stats dht = hivemind.DHT(listen_on=f'{LOCALHOST}:*', initial_peers=[f"{LOCALHOST}:{dht_root.port}"], start=True) initial_bits = bin(index % num_groups)[2:].rjust(nbits, '0') averager = hivemind.DecentralizedAverager( peer_tensors[i], dht, prefix='my_tensor', initial_group_bits=initial_bits, listen_on=f"{LOCALHOST}:*", compression_type=runtime_pb2.CompressionType.FLOAT16, target_group_size=target_group_size, averaging_expiration=averaging_expiration, request_timeout=request_timeout, start=True) processes.update({dht, averager}) logger.info(f'Averager {index}: started on endpoint {averager.endpoint}, group_bits: {averager.get_group_bits()}') for step in range(num_rounds): try: success = averager.step(timeout=round_timeout) is not None except: success = False with lock_stats: successful_steps += int(success) total_steps += 1 logger.info(f"Averager {index}: {'finished' if success else 'failed'} step {step}") logger.info(f"Averager {index}: done.") threads = [] for i in range(num_peers): thread = threading.Thread(target=run_averager, args=[i]) threads.append(thread) thread.start() time.sleep(spawn_dtime) t = time.time() for thread in threads: thread.join() logger.info(f"Benchmark finished in {time.time() - t:.3f} seconds.") logger.info(f"Success rate: {successful_steps / total_steps} ({successful_steps} out of {total_steps} attempts)") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--num_peers', type=int, default=16, required=False) parser.add_argument('--target_group_size', type=int, default=4, required=False) parser.add_argument('--num_rounds', type=int, default=5, required=False) parser.add_argument('--hid_size', type=int, default=256, required=False) parser.add_argument('--num_layers', type=int, default=3, required=False) parser.add_argument('--averaging_expiration', type=float, default=5, required=False) parser.add_argument('--round_timeout', type=float, default=15, required=False) parser.add_argument('--request_timeout', type=float, default=1, required=False) parser.add_argument('--spawn_dtime', type=float, default=0.1, required=False) parser.add_argument('--increase_file_limit', action="store_true") args = vars(parser.parse_args()) if args.pop('increase_file_limit', False): increase_file_limit() benchmark_averaging(**args)