from functools import partial import pytest import torch import torch.nn as nn import torch.nn.functional as F from sklearn.datasets import load_digits from hivemind import DHT from hivemind.moe.client import RemoteMixtureOfExperts, RemoteSwitchMixtureOfExperts from hivemind.moe.client.expert import create_remote_experts from hivemind.moe.expert_uid import ExpertInfo from hivemind.moe.server import background_server @pytest.mark.forked def test_training(max_steps: int = 100, threshold: float = 0.9): dataset = load_digits(n_class=2) X_train, y_train = torch.tensor(dataset["data"], dtype=torch.float), torch.tensor(dataset["target"]) SGD = partial(torch.optim.SGD, lr=0.05) with background_server( num_experts=2, device="cpu", optim_cls=SGD, hidden_dim=64, num_handlers=1 ) as server_peer_info: dht = DHT(initial_peers=server_peer_info.addrs, start=True) expert1, expert2 = create_remote_experts( [ ExpertInfo(uid="expert.0", peer_id=server_peer_info.peer_id), ExpertInfo(uid="expert.1", peer_id=server_peer_info.peer_id), ], dht=dht, ) model = nn.Sequential(expert2, nn.ReLU(), expert1, nn.Linear(64, 2)) opt = SGD(model.parameters(), lr=0.05) for step in range(max_steps): outputs = model(X_train) loss = F.cross_entropy(outputs, y_train) loss.backward() opt.step() opt.zero_grad() accuracy = (outputs.argmax(dim=1) == y_train).float().mean().item() if accuracy >= threshold: break assert accuracy >= threshold, f"too small accuracy: {accuracy}" @pytest.mark.forked def test_moe_training(max_steps: int = 100, threshold: float = 0.9, num_experts=2): dataset = load_digits(n_class=2) X_train, y_train = torch.tensor(dataset["data"], dtype=torch.float), torch.tensor(dataset["target"]) subsample_ix = torch.randint(0, len(X_train), (32,)) X_train, y_train = X_train[subsample_ix], y_train[subsample_ix] SGD = partial(torch.optim.SGD, lr=0.05) all_expert_uids = [f"expert.{i}" for i in range(num_experts)] with background_server( expert_uids=all_expert_uids, device="cpu", optim_cls=SGD, hidden_dim=64, num_handlers=1 ) as server_peer_info: dht = DHT(start=True, initial_peers=server_peer_info.addrs) moe = RemoteMixtureOfExperts(in_features=64, grid_size=(num_experts,), dht=dht, uid_prefix="expert.", k_best=2) model = nn.Sequential(moe, nn.Linear(64, 2)) opt = SGD(model.parameters(), lr=0.05) for step in range(max_steps): outputs = model(X_train) loss = F.cross_entropy(outputs, y_train) loss.backward() opt.step() opt.zero_grad() accuracy = (outputs.argmax(dim=1) == y_train).float().mean().item() if accuracy >= threshold: break assert accuracy >= threshold, f"too small accuracy: {accuracy}" class SwitchNetwork(nn.Module): def __init__(self, dht, in_features, num_classes, num_experts): super().__init__() self.moe = RemoteSwitchMixtureOfExperts( in_features=in_features, grid_size=(num_experts,), dht=dht, jitter_eps=0, uid_prefix="expert.", k_best=1, k_min=1, ) self.linear = nn.Linear(in_features, num_classes) def forward(self, x): moe_output, balancing_loss = self.moe(x) return self.linear(moe_output), balancing_loss @pytest.mark.forked def test_switch_training(max_steps: int = 10, threshold: float = 0.9, num_experts=5): dataset = load_digits(n_class=2) X_train, y_train = torch.tensor(dataset["data"], dtype=torch.float), torch.tensor(dataset["target"]) subsample_ix = torch.randint(0, len(X_train), (32,)) X_train, y_train = X_train[subsample_ix], y_train[subsample_ix] SGD = partial(torch.optim.SGD, lr=0.05) all_expert_uids = [f"expert.{i}" for i in range(num_experts)] with background_server( expert_uids=all_expert_uids, device="cpu", optim_cls=SGD, hidden_dim=64, num_handlers=1 ) as server_peer_info: dht = DHT(start=True, initial_peers=server_peer_info.addrs) model = SwitchNetwork(dht, 64, 2, num_experts) opt = SGD(model.parameters(), lr=0.05) for step in range(max_steps): outputs, balancing_loss = model(X_train) loss = F.cross_entropy(outputs, y_train) + 0.01 * balancing_loss loss.backward() opt.step() opt.zero_grad() accuracy = (outputs.argmax(dim=1) == y_train).float().mean().item() if accuracy >= threshold: break assert model.moe.grid_utilization.min().item() > (1 / num_experts) / 2 assert accuracy >= threshold, f"too small accuracy: {accuracy}"