import torch import hivemind from test_utils.run_server import background_server def test_remote_module_call(): """ Check that remote_module_call returns correct outputs and gradients if called directly """ num_experts = 8 k_min = 1 timeout_after_k_min = None backward_k_min = 1 timeout_total = None backward_timeout = None rtol = 1e-3 atol = 1e-6 xx = torch.randn(32, 1024, requires_grad=True) logits = torch.randn(3, requires_grad=True) random_proj = torch.randn_like(xx) with background_server(num_experts=num_experts, device='cpu', no_optimizer=True, no_dht=True) as (localhost, server_port, dht_port): experts = [hivemind.RemoteExpert(uid=f'expert.{i}', port=server_port) for i in range(num_experts)] moe_output, = hivemind.client.moe._RemoteMoECall.apply( logits, experts[:len(logits)], k_min, timeout_after_k_min, backward_k_min, timeout_total, backward_timeout, [(None,), {}], xx) grad_xx_moe, = torch.autograd.grad(torch.sum(random_proj * moe_output), xx, retain_graph=True) grad_logits_moe, = torch.autograd.grad(torch.sum(random_proj * moe_output), logits, retain_graph=True) # reference outputs: call all experts manually and average their outputs with softmax probabilities probs = torch.softmax(logits, 0) outs = [expert(xx) for expert in experts[:3]] manual_output = sum(p * x for p, x in zip(probs, outs)) grad_xx_manual, = torch.autograd.grad(torch.sum(random_proj * manual_output), xx, retain_graph=True) grad_xx_manual_rerun, = torch.autograd.grad(torch.sum(random_proj * manual_output), xx, retain_graph=True) grad_logits_manual, = torch.autograd.grad(torch.sum(random_proj * manual_output), logits, retain_graph=True) assert torch.allclose(grad_xx_manual, grad_xx_manual_rerun, rtol, atol), "Experts are non-deterministic. The test" \ " is only valid for deterministic experts" assert torch.allclose(moe_output, manual_output, rtol, atol), "_RemoteMoECall returned incorrect output" assert torch.allclose(grad_xx_moe, grad_xx_manual, rtol, atol), "incorrect gradient w.r.t. input" assert torch.allclose(grad_logits_moe, grad_logits_manual, rtol, atol), "incorrect gradient w.r.t. logits" def test_determinism(): rtol = 0 atol = 1e-6 xx = torch.randn(32, 1024, requires_grad=True) mask = torch.randint(0, 1, (32, 1024)) with background_server(num_experts=1, device='cpu', expert_cls='det_dropout', no_optimizer=True, no_dht=True) as (interface, server_port, dht_port): expert = hivemind.RemoteExpert(uid=f'expert.0', port=server_port) out = expert(xx, mask) out_rerun = expert(xx, mask) grad, = torch.autograd.grad(out.sum(), xx, retain_graph=True) grad_rerun, = torch.autograd.grad(out_rerun.sum(), xx, retain_graph=True) assert torch.allclose(out, out_rerun, rtol, atol), "Dropout layer outputs are non-deterministic." assert torch.allclose(grad, grad_rerun, rtol, atol), "Gradients are non-deterministic." def test_compute_expert_scores(): try: dht = hivemind.DHTNode(port=hivemind.find_open_port(), start=True) moe = hivemind.client.moe.RemoteMixtureOfExperts( dht=dht, in_features=1024, grid_size=(40,), k_best=4, k_min=1, timeout_after_k_min=1, uid_prefix='expert') gx, gy = torch.randn(4, 5, requires_grad=True), torch.torch.randn(4, 3, requires_grad=True) ii = [[4, 0, 2], [3, 1, 1, 1, 3], [0], [3, 2]] jj = [[2, 2, 1], [0, 1, 2, 0, 1], [0], [1, 2]] batch_experts = [ [hivemind.RemoteExpert(uid=f'expert.{ii[batch_i][expert_i]}.{jj[batch_i][expert_i]}') for expert_i in range(len(ii[batch_i]))] for batch_i in range(len(ii)) ] # note: these experts do not exists on server, we use them only to test moe compute_expert_scores logits = moe.compute_expert_scores([gx, gy], batch_experts) torch.softmax(logits, dim=-1).norm(dim=-1).mean().backward() assert gx.grad.norm().item() > 0 and gy.grad.norm().item(), "compute_expert_scores didn't backprop" for batch_i in range(len(ii)): for expert_i in range(len(ii[batch_i])): assert torch.allclose(logits[batch_i, expert_i], gx[batch_i, ii[batch_i][expert_i]] + gy[batch_i, jj[batch_i][expert_i]]), \ "compute_expert_scores returned incorrect score" finally: dht.shutdown()