justheuristic 3 年之前
父節點
當前提交
f4b8c2cbb5
共有 1 個文件被更改,包括 0 次插入7 次删除
  1. 0 7
      hivemind/optim/collaborative.py

+ 0 - 7
hivemind/optim/collaborative.py

@@ -81,8 +81,6 @@ class CollaborativeOptimizer(DecentralizedOptimizerBase):
       refresh the collaboration-wide statistics (to avoid missing the moment when to run the next step)
       refresh the collaboration-wide statistics (to avoid missing the moment when to run the next step)
     :param bandwidth: peer's network bandwidth for the purpose of load balancing (recommended: internet speed in mbps)
     :param bandwidth: peer's network bandwidth for the purpose of load balancing (recommended: internet speed in mbps)
     :param step_tolerance: a peer can temporarily be delayed by this many steps without being deemed out of sync
     :param step_tolerance: a peer can temporarily be delayed by this many steps without being deemed out of sync
-    :param staleness_timeout: peers that reported gradients this many seconds ago or earlier do not count
-      toward progress for the current step (but do count toward other statistics, such as the collaboraiton size)
     :param performance_ema_alpha: smoothing value used to estimate this peer's performance (training samples per second)
     :param performance_ema_alpha: smoothing value used to estimate this peer's performance (training samples per second)
     :param averaging_expiration: peer's requests for averaging will be valid for this many seconds
     :param averaging_expiration: peer's requests for averaging will be valid for this many seconds
     :param metadata_expiration: peer's metadata (e.g. samples processed) is stored onto DHT for this many seconds
     :param metadata_expiration: peer's metadata (e.g. samples processed) is stored onto DHT for this many seconds
@@ -118,7 +116,6 @@ class CollaborativeOptimizer(DecentralizedOptimizerBase):
         metadata_expiration: float = 60.0,
         metadata_expiration: float = 60.0,
         averaging_timeout: Optional[float] = None,
         averaging_timeout: Optional[float] = None,
         load_state_timeout: float = 600.0,
         load_state_timeout: float = 600.0,
-        staleness_timeout: float = 30.0,
         step_tolerance: int = 1,
         step_tolerance: int = 1,
         reuse_grad_buffers: bool = False,
         reuse_grad_buffers: bool = False,
         accumulate_grads_on: Optional[torch.device] = None,
         accumulate_grads_on: Optional[torch.device] = None,
@@ -142,7 +139,6 @@ class CollaborativeOptimizer(DecentralizedOptimizerBase):
             default_refresh_period,
             default_refresh_period,
         )
         )
         self.expected_drift_peers, self.expected_drift_rate = expected_drift_peers, expected_drift_rate
         self.expected_drift_peers, self.expected_drift_rate = expected_drift_peers, expected_drift_rate
-        self.staleness_timeout = staleness_timeout
         self.averaging_timeout = averaging_timeout
         self.averaging_timeout = averaging_timeout
         self.load_state_timeout = load_state_timeout
         self.load_state_timeout = load_state_timeout
         self.metadata_expiration = metadata_expiration
         self.metadata_expiration = metadata_expiration
@@ -450,9 +446,6 @@ class CollaborativeOptimizer(DecentralizedOptimizerBase):
         total_samples_accumulated = estimated_current_samples = total_samples_per_second = 0
         total_samples_accumulated = estimated_current_samples = total_samples_per_second = 0
 
 
         for state in valid_peer_states:
         for state in valid_peer_states:
-            if current_time - state.time > self.staleness_timeout:
-                logger.debug(f"Ignoring record {state} because it is too old: {current_time - state.time} seconds.")
-                continue
             total_samples_per_second += state.samples_per_second
             total_samples_per_second += state.samples_per_second
             if state.step >= global_optimizer_step - self.step_tolerance:
             if state.step >= global_optimizer_step - self.step_tolerance:
                 total_samples_accumulated += state.samples_accumulated
                 total_samples_accumulated += state.samples_accumulated