瀏覽代碼

wip: implement grad wrt logits

justheuristic 5 年之前
父節點
當前提交
87b2f8b635
共有 1 個文件被更改,包括 28 次插入16 次删除
  1. 28 16
      tesseract/client/moe.py

+ 28 - 16
tesseract/client/moe.py

@@ -198,11 +198,12 @@ class _RemoteMoECall(torch.autograd.Function):
         alive_ix = torch.as_tensor(alive_ix, device=expert_logits.device)
         alive_expert_probs = torch.softmax(expert_logits[alive_ix], dim=0)
 
-        flat_average_outputs = tuple(map(
-            lambda *tensors: sum(x * weight for x, weight in zip(tensors, alive_expert_probs)), *alive_outputs))
+        stacked_alive_outputs = tuple(map(torch.stack, alive_outputs))
+        flat_average_outputs = tuple(dot_along_first_axis(alive_expert_probs, stacked_out)
+                                     for stacked_out in stacked_alive_outputs)
 
         # 3. save individual outputs for backward pass
-        ctx.save_for_backward(expert_logits, alive_ix, alive_expert_probs)
+        ctx.save_for_backward(expert_logits, alive_ix, alive_expert_probs, *stacked_alive_outputs)
         ctx._alive_contexts = alive_contexts
         ctx._backward_k_min = backward_k_min
         ctx._backward_timeout = backward_timeout
@@ -212,24 +213,31 @@ class _RemoteMoECall(torch.autograd.Function):
     @once_differentiable
     def backward(cls, ctx, *grad_outputs_flat: torch.Tensor) -> Tuple[Optional[torch.Tensor], ...]:
         """ Like normal backward, but we ignore any experts that failed during backward pass """
-        expert_logits, alive_ix, alive_expert_probas = ctx.saved_tensors
+        expert_logits, alive_ix, alive_expert_probas, *stacked_alive_outputs = ctx.saved_tensors
         alive_contexts, k_min, timeout = ctx._alive_contexts, ctx._backward_k_min, ctx._backward_timeout
 
         jobs = [partial(cls._run_expert_backward, ctx, prob, *grad_outputs_flat)
                 for ctx, prob in zip(alive_contexts, alive_expert_probas.split(1))]
         results = run_and_await_k(jobs, k=k_min, timeout_after_k=None, timeout_total=timeout)
-        survived_backward, survived_grad_inputs = zip(*((alive_ix[i], grads) for i, grads in enumerate(results)))
-        survived_backward = torch.as_tensor(survived_backward, device=expert_logits.device)
-        survived_ix = alive_ix[survived_backward]
-        survived_expert_probas = torch.softmax(expert_logits[survived_ix], dim=0)
-
-        flat_grad_inputs = tuple(map(
-            lambda *tensors: sum(x * (weight / old_weight) for x, weight, old_weight
-                                 in zip(tensors, survived_expert_probas, alive_expert_probas[survived_backward])),
-            *survived_grad_inputs))
-
-        grad_logits = None  # TODO
-        return grad_logits, None, None, None, None, None, None, None, *flat_grad_inputs
+        backward_survivors_in_alive_ix, survived_grad_inputs = zip(*((i, grads) for i, grads in enumerate(results)))
+        backward_survivors_in_alive_ix = torch.as_tensor(backward_survivors_in_alive_ix, device=expert_logits.device)
+        backward_survivors_ix = alive_ix[backward_survivors_in_alive_ix]
+        survived_probas = torch.softmax(expert_logits[backward_survivors_ix], dim=0)
+        weight_ratios = survived_probas / alive_expert_probas[backward_survivors_in_alive_ix]
+
+        flat_grad_inputs = tuple(dot_along_first_axis(weight_ratios, stacked_grad_inp)
+                                 for stacked_grad_inp in map(torch.stack, survived_grad_inputs))
+
+        # compute grad w.r.t. logits
+        grad_wrt_probs = sum(tuple(
+            torch.sum(grad_out[None, ...] * stacked_avive_out[backward_survivors_in_alive_ix],
+                      dim=tuple(range(1, stacked_avive_out.ndim)))
+            for grad_out, stacked_avive_out in zip(grad_outputs_flat, stacked_alive_outputs)
+        ))
+        softmax_jacobian = torch.diagflat(survived_probas) - torch.ger(survived_probas, survived_probas)
+        grad_wrt_logits = grad_wrt_probs @ softmax_jacobian
+
+        return grad_wrt_logits, None, None, None, None, None, None, None, *flat_grad_inputs
 
     @staticmethod
     def _run_expert_forward(expert: RemoteExpert, *args: torch.Tensor, **kwargs: torch.Tensor):
@@ -242,3 +250,7 @@ class _RemoteMoECall(torch.autograd.Function):
         backward_result = run_isolated_backward(_RemoteModuleCall, ctx, *(grad * weight for grad in grad_outputs))
         grad_dummy, no_grad_uid, no_grad_hostname, no_grad_port, *grad_inputs = backward_result
         return grad_inputs
+
+
+def dot_along_first_axis(x, y):
+    (x.view(-1, *[1] * (y.ndim - 1))).sum(0)