|
@@ -0,0 +1,130 @@
|
|
|
|
+import heapq
|
|
|
|
+import random
|
|
|
|
+import threading
|
|
|
|
+from typing import Optional, Tuple, List, Dict
|
|
|
|
+
|
|
|
|
+import torch
|
|
|
|
+import torch.nn as nn
|
|
|
|
+
|
|
|
|
+import hivemind
|
|
|
|
+from hivemind import nested_compare, nested_flatten, get_dht_time
|
|
|
|
+from hivemind.moe.client.expert import _RemoteModuleCall, DUMMY
|
|
|
|
+from hivemind.moe.server.expert_uid import ExpertUID
|
|
|
|
+from hivemind.utils import DHTExpiration
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+class LoadBalancedExpert(nn.Module):
|
|
|
|
+ """
|
|
|
|
+ A torch module that dynamically assigns weights to one RemoteExpert from a pool.
|
|
|
|
+ ToDo docstring, similar to RemoteMixtureOfExperts
|
|
|
|
+ """
|
|
|
|
+
|
|
|
|
+ def __init__(
|
|
|
|
+ self,
|
|
|
|
+ *,
|
|
|
|
+ dht: hivemind.DHT,
|
|
|
|
+ uid_prefix: str,
|
|
|
|
+ grid_size: Tuple[int, ...],
|
|
|
|
+ forward_timeout: Optional[float] = None,
|
|
|
|
+ backward_timeout: Optional[float] = None,
|
|
|
|
+ detect_anomalies: bool = False,
|
|
|
|
+ refresh_period: float = 30.,
|
|
|
|
+ **dht_kwargs,
|
|
|
|
+ ):
|
|
|
|
+ super().__init__()
|
|
|
|
+ assert len(grid_size) == 1, "only 1d grids are supported for now"
|
|
|
|
+ self.dht, self.dht_kwargs, self.uid_prefix, self.grid_size = dht, dht_kwargs, uid_prefix, grid_size
|
|
|
|
+ self.forward_timeout, self.backward_timeout = forward_timeout, backward_timeout
|
|
|
|
+ self.detect_anomalies = detect_anomalies
|
|
|
|
+
|
|
|
|
+ self.active_experts: Dict[ExpertUID, DHTExpiration] = {}
|
|
|
|
+ self.banned_experts: Dict[ExpertUID, DHTExpiration] = {}
|
|
|
|
+ self.expert_queue: List[Tuple[float, float, ExpertUID]] = []
|
|
|
|
+ self._expert_info = None # expert['info'] from one of experts in the grid
|
|
|
|
+ self.refresh_period, self.last_refresh = refresh_period, 0.0
|
|
|
|
+ self.should_refresh_experts, self.refresh_complete = threading.Event(), threading.Event()
|
|
|
|
+
|
|
|
|
+ def fetch_experts_in_background(self):
|
|
|
|
+ while True:
|
|
|
|
+ time_to_next_update = max(0.0, self.last_update + self.refresh_period - get_dht_time())
|
|
|
|
+ try:
|
|
|
|
+ self.should_refresh_experts.wait(timeout=time_to_next_update)
|
|
|
|
+ # update triggered by main thread
|
|
|
|
+ except TimeoutError:
|
|
|
|
+ pass # update triggered by refresh_period
|
|
|
|
+
|
|
|
|
+ TODO_FETCH_MORE_EXPERTS_HERE
|
|
|
|
+
|
|
|
|
+ # state:
|
|
|
|
+ # * available_experts: Dict[uid -> (EMA, expiration)] - experts that take part in load balancing
|
|
|
|
+ # * maintain blacklist: Dict[uid -> expiration] - experts banned until expiration for a non-response
|
|
|
|
+ # * maintain a min-heap queue of (load, rng, expert) tuples
|
|
|
|
+ # * update_triggered, update_finished: threading.Event
|
|
|
|
+ #
|
|
|
|
+ # update experts in background, while True:
|
|
|
|
+ # * wait for 30s or for update_triggered, whichever comes first
|
|
|
|
+ # * for expert, expiration_time in fetch_experts_from_dht():
|
|
|
|
+ # * * if expert in banned and expiration_time <= self.blacklist[expert]:
|
|
|
|
+ # * * * continue # expert is still banned
|
|
|
|
+ # * * else: add expert to min-heap, intitialize throughput
|
|
|
|
+ # * update_complete.set()
|
|
|
|
+ #
|
|
|
|
+ # on forward/backward:
|
|
|
|
+ # pass (queue, blacklist, update_triggered, update_finished) to the autograd function
|
|
|
|
+ #
|
|
|
|
+ # forward/backward autograd function
|
|
|
|
+ # while True:
|
|
|
|
+ # * while len(available experts) == 0:
|
|
|
|
+ # * * update_finished.clear()
|
|
|
|
+ # * * update_triggered.set()
|
|
|
|
+ # * * update_finished.wait()
|
|
|
|
+ # * with threading.lock:
|
|
|
|
+ # * * load, _, expert = queue.heappop_min()
|
|
|
|
+ # * * expert_throughput_ema, expert_expiration_time = get ema from dict
|
|
|
|
+ # * * task_complexity = batch_size * 1.5 if forward else 2.5 # if backward
|
|
|
|
+ # * * queue.heappush (load + load_coefficient / expert_throughput_ema, new_rng, expert)
|
|
|
|
+ # * * try:
|
|
|
|
+ # * * * with measure_ema(start=now, batch_size=batch_size) as measured_ema:
|
|
|
|
+ # * * * * outputs = call_forward_or_backward()
|
|
|
|
+ # * * * expert_throughput_ema.update(measured_ema)
|
|
|
|
+ # * * * return outputs # <--------- this is the desired exit point
|
|
|
|
+ # * * except DidNotRespondCorrectly:
|
|
|
|
+ # * * * banned_experts[expert] = expert_expiration_time
|
|
|
|
+ # * * continue # try again
|
|
|
|
+
|
|
|
|
+ def forward(self, *args: torch.Tensor, **kwargs: torch.Tensor):
|
|
|
|
+ """
|
|
|
|
+ Call one of the RemoteExperts for the specified inputs and return output. Compatible with pytorch.autograd.
|
|
|
|
+
|
|
|
|
+ :param args: input tensors that will be passed to each expert after input, batch-first
|
|
|
|
+ :param kwargs: extra keyword tensors that will be passed to each expert, batch-first
|
|
|
|
+ :returns: averaged predictions of all experts that delivered result on time, nested structure of batch-first
|
|
|
|
+ """
|
|
|
|
+ assert len(kwargs) == len(self.info["keyword_names"]), f"Keyword args should be {self.info['keyword_names']}"
|
|
|
|
+ kwargs = {key: kwargs[key] for key in self.info["keyword_names"]}
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+ if self._expert_info is None:
|
|
|
|
+ raise NotImplementedError()
|
|
|
|
+ # Note: we put keyword arguments in the same order as on a server to prevent f(a=1, b=2) != f(b=2, a=1) errors
|
|
|
|
+
|
|
|
|
+ forward_inputs = (args, kwargs)
|
|
|
|
+
|
|
|
|
+ if not nested_compare(forward_inputs, self.info["forward_schema"]):
|
|
|
|
+ raise TypeError(f"Inputs do not match expert input schema. Did you pass the right number of parameters?")
|
|
|
|
+
|
|
|
|
+ flat_outputs = _RemoteModuleCall.apply(DUMMY, self.uid, self.stub, self.info, *nested_flatten(forward_inputs))
|
|
|
|
+ # Note: we send DUMMY to prevent torch from excluding expert from backward if no other inputs require grad
|
|
|
|
+ return nested_pack(flat_outputs, structure=self.info["outputs_schema"])
|
|
|
|
+
|
|
|
|
+ @property
|
|
|
|
+ def info(self):
|
|
|
|
+ if self._expert_info is None:
|
|
|
|
+ # grab some expert to set ensemble output shape
|
|
|
|
+ proj_device = self.proj.weight.device
|
|
|
|
+ dummy_scores_concat = self.proj(torch.randn(1, self.proj.in_features, device=proj_device))
|
|
|
|
+ dummy_scores = dummy_scores_concat.cpu().split_with_sizes(self.beam_search.grid_size, dim=-1)
|
|
|
|
+ dummy_experts = self.beam_search.find_best_experts(dummy_scores, beam_size=1)
|
|
|
|
+ self._expert_info = dummy_experts[0].info
|
|
|
|
+ return self._expert_info
|