Denis Mazur 4 år sedan
förälder
incheckning
2dcffd7ffe
2 ändrade filer med 143 tillägg och 4 borttagningar
  1. 0 4
      hivemind/moe/client/expert.py
  2. 143 0
      hivemind/moe/expert.py

+ 0 - 4
hivemind/moe/client/expert.py

@@ -18,10 +18,6 @@ def _get_expert_stub(endpoint: Endpoint, *extra_options: Tuple[str, Any]):
     channel_options = (("grpc.max_send_message_length", -1), ("grpc.max_receive_message_length", -1)) + extra_options
     return ChannelCache.get_stub(endpoint, runtime_grpc.ConnectionHandlerStub, aio=False, options=channel_options)
 
-def _get_p2p_expert_stub(p2p: P2P, server_peer_info: PeerInfo) -> StubBase:
-    return ConnectionHandler.get_stub(p2p, server_peer_info.peer_id)
-
-
 
 class RemoteExpert(nn.Module):
     """

+ 143 - 0
hivemind/moe/expert.py

@@ -0,0 +1,143 @@
+import asyncio
+import pickle
+from typing import Any, Dict, Optional, Tuple, Type
+from threading import Thread
+
+import torch
+import torch.nn as nn
+from torch.autograd.function import once_differentiable
+
+
+from hivemind.utils.compression import deserialize_torch_tensor, serialize_torch_tensor
+from hivemind.utils import nested_compare, nested_flatten, nested_pack
+from hivemind.p2p import P2P, PeerInfo, StubBase
+from hivemind.proto import runtime_pb2
+from hivemind.moe.server import ConnectionHandler
+
+
+DUMMY = torch.empty(0, requires_grad=True)  # dummy tensor that triggers autograd in RemoteExpert
+
+
+ConnectionHandlerStub = ConnectionHandler._stub_type
+
+
+def _get_expert_stub(p2p: P2P, server_peer_info: PeerInfo) -> ConnectionHandlerStub:
+    return ConnectionHandler.get_stub(p2p, server_peer_info.peer_id)
+
+
+class RemoteExpert(nn.Module):
+    """
+    A simple module that runs forward/backward of an expert hosted on a remote machine.
+    Works seamlessly with pytorch autograd. (this is essentially a simple RPC function)
+    Warning: RemoteExpert currently assumes that you provide it with correct input shapes.
+    Sending wrong input shapes can cause RemoteExpert to freeze indefinitely due to error in runtime.
+    :param uid: unique expert identifier
+    :param endpoint: network endpoint of a server that services that expert, e.g. "201.123.321.99:1337" or "[::]:8080"
+    """
+
+    def __init__(self, uid, p2p: P2P, server_peer_info: PeerInfo):
+        super().__init__()
+        self.uid, self.p2p, self.server_peer_info = uid, p2p, server_peer_info
+        self._info = None
+
+        self.loop = asyncio.new_event_loop()
+
+        def _run(loop):
+            asyncio.set_event_loop(loop)
+            loop.run_forever()
+
+        Thread(target=_run, args=(self.loop,)).start()
+
+    @property
+    def stub(self) -> StubBase:
+        return _get_expert_stub(self.p2p, self.server_peer_info)
+
+    def forward(self, *args, **kwargs):
+        """Call RemoteExpert for the specified inputs and return its output(s). Compatible with pytorch.autograd."""
+        assert len(kwargs) == len(self.info["keyword_names"]), f"Keyword args should be {self.info['keyword_names']}"
+        kwargs = {key: kwargs[key] for key in self.info["keyword_names"]}
+
+        # Note: we put keyword arguments in the same order as on a server to prevent f(a=1, b=2) != f(b=2, a=1) errors
+
+        forward_inputs = (args, kwargs)
+
+        if not nested_compare(forward_inputs, self.info["forward_schema"]):
+            raise TypeError(f"Inputs do not match expert input schema. Did you pass the right number of parameters?")
+
+        flat_outputs = _RemoteModuleCall.apply(
+            DUMMY,
+            self.uid,
+            self.stub,
+            self.loop,
+            self.info,
+            *nested_flatten(forward_inputs),
+        )
+
+        # Note: we send DUMMY to prevent torch from excluding expert from backward if no other inputs require grad
+        return nested_pack(flat_outputs, structure=self.info["outputs_schema"])
+
+    @property
+    def info(self):
+        if self._info is None:
+            outputs = asyncio.run_coroutine_threadsafe(
+                self.stub.rpc_info(runtime_pb2.ExpertUID(uid=self.uid)),
+                self.loop
+            ).result()
+            self._info = pickle.loads(outputs.serialized_info)
+        return self._info
+
+    def extra_repr(self):
+        return f"uid={self.uid}, endpoint={self.endpoint}"
+
+
+class _RemoteModuleCall(torch.autograd.Function):
+    """Internal autograd-friendly call of a remote module. For applications, use RemoteExpert instead."""
+
+    @staticmethod
+    def forward(
+        ctx,
+        dummy: torch.Tensor,
+        uid: str,
+        stub: ConnectionHandlerStub,
+        loop: asyncio.AbstractEventLoop,
+        info: Dict[str, Any],
+        *inputs: torch.Tensor,
+    ) -> Tuple[torch.Tensor, ...]:
+        # Note: *inputs are flattened input tensors that follow the expert's info['input_schema']
+        # detach to avoid pickling the computation graph
+        inputs = tuple(tensor.cpu().detach() for tensor in inputs)
+        ctx.uid, ctx.stub, ctx.info, ctx.loop = uid, stub, info, loop
+        ctx.save_for_backward(*inputs)
+
+        serialized_tensors = [
+            serialize_torch_tensor(inp, proto.compression)
+            for inp, proto in zip(inputs, nested_flatten(info["forward_schema"]))
+        ]
+
+        outputs = asyncio.run_coroutine_threadsafe(
+            stub.rpc_forward(runtime_pb2.ExpertRequest(uid=ctx.uid, tensors=serialized_tensors)),
+            loop,
+        ).result()
+
+        deserialized_outputs = [deserialize_torch_tensor(tensor) for tensor in outputs.tensors]
+
+        return tuple(deserialized_outputs)
+
+    @staticmethod
+    @once_differentiable
+    def backward(ctx, *grad_outputs) -> Tuple[Optional[torch.Tensor], ...]:
+        grad_outputs_cpu = tuple(tensor.cpu() for tensor in grad_outputs)
+        inputs_and_grad_outputs = tuple(nested_flatten((ctx.saved_tensors, grad_outputs_cpu)))
+        backward_schema = tuple(nested_flatten((ctx.info["forward_schema"], ctx.info["outputs_schema"])))
+        serialized_tensors = [
+            serialize_torch_tensor(tensor, proto.compression)
+            for tensor, proto in zip(inputs_and_grad_outputs, backward_schema)
+        ]
+
+        grad_inputs = asyncio.run_coroutine_threadsafe(
+            ctx.stub.rpc_backward(runtime_pb2.ExpertRequest(uid=ctx.uid, tensors=serialized_tensors)),
+            ctx.loop,
+        ).result()
+
+        deserialized_grad_inputs = [deserialize_torch_tensor(tensor) for tensor in grad_inputs.tensors]
+        return (DUMMY, None, None, None, *deserialized_grad_inputs)