Browse Source

Fix device in Switch-MoE, overhaul Server architecture (#256)

* Set correct device for scores

* Put pipe_awaiter in a context manager

* Pass min_batch_size to ExpertBackend in Server.create

* Remove unneeded variable for exception in generate_uids_from_pattern

* Overhaul server architecture
Max Ryabinin 4 years ago
parent
commit
2328ba9262

+ 27 - 27
hivemind/client/averaging/__init__.py

@@ -171,35 +171,34 @@ class DecentralizedAverager(mp.Process, averaging_pb2_grpc.DecentralizedAveragin
         """ Serve DecentralizedAverager forever. This function will not return until the averager is shut down """
         loop = switch_to_uvloop()
         # initialize asyncio synchronization primitives in this event loop
-        pipe_awaiter = ThreadPoolExecutor(max_workers=1)
-
-        async def _run():
-            grpc.aio.init_grpc_aio()
-
-            if self.listen:
-                server = grpc.aio.server(**self.kwargs, options=GRPC_KEEPALIVE_OPTIONS)
-                averaging_pb2_grpc.add_DecentralizedAveragingServicer_to_server(self, server)
-                found_port = server.add_insecure_port(self.listen_on)
-                assert found_port != 0, f"Failed to listen to {self.listen_on}"
-                self._port.value = found_port
-                await server.start()
-            else:
-                logger.info(f"The averager running in an experimental client mode, please report any bugs.")
+        with ThreadPoolExecutor(max_workers=1) as pipe_awaiter:
+            async def _run():
+                grpc.aio.init_grpc_aio()
+
+                if self.listen:
+                    server = grpc.aio.server(**self.kwargs, options=GRPC_KEEPALIVE_OPTIONS)
+                    averaging_pb2_grpc.add_DecentralizedAveragingServicer_to_server(self, server)
+                    found_port = server.add_insecure_port(self.listen_on)
+                    assert found_port != 0, f"Failed to listen to {self.listen_on}"
+                    self._port.value = found_port
+                    await server.start()
+                else:
+                    logger.info(f"The averager running in an experimental client mode, please report any bugs.")
 
-            self._matchmaking = Matchmaking(self.endpoint, self.schema_hash, self.dht, **self.matchmaking_kwargs,
-                                            client_mode=not self.listen)
-            if self.listen:
-                asyncio.create_task(self._declare_for_download_periodically())
+                self._matchmaking = Matchmaking(self.endpoint, self.schema_hash, self.dht, **self.matchmaking_kwargs,
+                                                client_mode=not self.listen)
+                if self.listen:
+                    asyncio.create_task(self._declare_for_download_periodically())
 
-            self._pending_group_assembled = asyncio.Event()
-            self._pending_group_assembled.set()
-            self.ready.set()
+                self._pending_group_assembled = asyncio.Event()
+                self._pending_group_assembled.set()
+                self.ready.set()
 
-            while True:
-                method, args, kwargs = await loop.run_in_executor(pipe_awaiter, self._pipe.recv)
-                asyncio.create_task(getattr(self, method)(*args, **kwargs))
+                while True:
+                    method, args, kwargs = await loop.run_in_executor(pipe_awaiter, self._pipe.recv)
+                    asyncio.create_task(getattr(self, method)(*args, **kwargs))
 
-        loop.run_until_complete(_run())
+            loop.run_until_complete(_run())
 
     def run_in_background(self, await_ready=True, timeout=None):
         """
@@ -255,7 +254,8 @@ class DecentralizedAverager(mp.Process, averaging_pb2_grpc.DecentralizedAveragin
                 try:
                     self._pending_group_assembled.clear()
                     data_for_gather = self.serializer.dumps([weight, self._throughput, self.listen, gather_binary])
-                    group_info = await self._matchmaking.look_for_group(timeout=timeout, data_for_gather=data_for_gather)
+                    group_info = await self._matchmaking.look_for_group(timeout=timeout,
+                                                                        data_for_gather=data_for_gather)
                     if group_info is None:
                         raise AllreduceException("Averaging step failed: could not find a group.")
                     group_id = group_info.group_id
@@ -294,7 +294,7 @@ class DecentralizedAverager(mp.Process, averaging_pb2_grpc.DecentralizedAveragin
         """ Use a group description found by Matchmaking to form AllreduceRunner """
         try:
             weights, throughputs, modes, user_gathered = zip(*map(self.serializer.loads, group_info.gathered))
-            user_gathered = dict(zip(group_info.endpoints,  map(self.serializer.loads, user_gathered)))
+            user_gathered = dict(zip(group_info.endpoints, map(self.serializer.loads, user_gathered)))
 
             # compute optimal part sizes from peer throughputs
             incoming_throughputs = [thr if listen else 0.0 for thr, listen in zip(throughputs, modes)]

+ 7 - 4
hivemind/client/moe.py

@@ -120,8 +120,11 @@ class RemoteMixtureOfExperts(nn.Module):
         batch_size = len(batch_experts)
         max_num_experts = max(expert_counts)
         total_num_experts = sum(expert_counts)
-        expert_index_in_batch = torch.arange(total_num_experts, device=grid_scores[0].device)
-        expert_strides = torch.cumsum(torch.as_tensor([0] + expert_counts, device=grid_scores[0].device), dim=-1)[:-1]
+
+        device = grid_scores[0].device
+
+        expert_index_in_batch = torch.arange(total_num_experts, device=device)
+        expert_strides = torch.cumsum(torch.as_tensor([0] + expert_counts, device=device), dim=-1)[:-1]
         flat_batch_indices = (expert_index_in_batch >= expert_strides[:, None]).to(torch.int32).sum(0) - 1
         flat_local_indices = expert_index_in_batch - expert_strides[flat_batch_indices]
         flat_experts = [expert for row in batch_experts for expert in row]
@@ -133,11 +136,11 @@ class RemoteMixtureOfExperts(nn.Module):
             grid_indices[i] = torch.as_tensor(expert_indices, dtype=grid_indices.dtype)
 
         scores_per_dim = [
-            dim_scores[flat_batch_indices, dim_indices] if len(flat_batch_indices) else torch.zeros(0)
+            dim_scores[flat_batch_indices, dim_indices] if len(flat_batch_indices) else torch.zeros(0, device=device)
             for dim_scores, dim_indices in zip(grid_scores, grid_indices.T)]
         flat_scores = torch.sum(torch.stack(scores_per_dim, dim=0), dim=0)
 
-        scores = torch.full((batch_size, max_num_experts), fill_value=-float('inf'), device=grid_scores[0].device)
+        scores = torch.full((batch_size, max_num_experts), fill_value=-float('inf'), device=device)
         scores[flat_batch_indices, flat_local_indices] = flat_scores  # backprop-able w.r.t. flat_scores
         return scores
 

+ 7 - 4
hivemind/client/switch_moe.py

@@ -156,8 +156,11 @@ class RemoteSwitchMixtureOfExperts(RemoteMixtureOfExperts):
         batch_size = len(batch_experts)
         max_num_experts = max(expert_counts)
         total_num_experts = sum(expert_counts)
-        expert_index_in_batch = torch.arange(total_num_experts, device=grid_probs[0].device)
-        expert_strides = torch.cumsum(torch.as_tensor([0] + expert_counts, device=grid_probs[0].device), dim=-1)[:-1]
+
+        device = grid_probs[0].device
+
+        expert_index_in_batch = torch.arange(total_num_experts, device=device)
+        expert_strides = torch.cumsum(torch.as_tensor([0] + expert_counts, device=device), dim=-1)[:-1]
         flat_batch_indices = (expert_index_in_batch >= expert_strides[:, None]).to(torch.int32).sum(0) - 1
         flat_local_indices = expert_index_in_batch - expert_strides[flat_batch_indices]
         flat_experts = [expert for row in batch_experts for expert in row]
@@ -169,10 +172,10 @@ class RemoteSwitchMixtureOfExperts(RemoteMixtureOfExperts):
             grid_indices[i] = torch.as_tensor(expert_indices, dtype=grid_indices.dtype)
 
         scores_per_dim = [
-            dim_scores[flat_batch_indices, dim_indices] if len(flat_batch_indices) else torch.zeros(0)
+            dim_scores[flat_batch_indices, dim_indices] if len(flat_batch_indices) else torch.zeros(0, device=device)
             for dim_scores, dim_indices in zip(grid_probs, grid_indices.T)]
         flat_scores = torch.prod(torch.stack(scores_per_dim, dim=0), dim=0)
 
-        scores = torch.full((batch_size, max_num_experts), fill_value=-float('inf'), device=grid_probs[0].device)
+        scores = torch.full((batch_size, max_num_experts), fill_value=-float('inf'), device=device)
         scores[flat_batch_indices, flat_local_indices] = flat_scores  # backprop-able w.r.t. flat_scores
         return scores

+ 15 - 17
hivemind/dht/__init__.py

@@ -69,25 +69,23 @@ class DHT(mp.Process):
     def run(self) -> None:
         """ Serve DHT forever. This function will not return until DHT node is shut down """
         loop = switch_to_uvloop()
-        pipe_awaiter = ThreadPoolExecutor(max_workers=1)
 
-        async def _run():
-            node = await DHTNode.create(
-                initial_peers=list(self.initial_peers), listen_on=self.listen_on, parallel_rpc=self.parallel_rpc,
-                num_workers=self.max_workers or 1, record_validator=self._record_validator,
-                **self.kwargs)
-            if node.port is not None:
-                self._port.value = node.port
-            self.ready.set()
+        with ThreadPoolExecutor(max_workers=1) as pipe_awaiter:
+            async def _run():
+                node = await DHTNode.create(
+                    initial_peers=list(self.initial_peers), listen_on=self.listen_on, parallel_rpc=self.parallel_rpc,
+                    num_workers=self.max_workers or 1, record_validator=self._record_validator,
+                    **self.kwargs)
+                if node.port is not None:
+                    self._port.value = node.port
+                self.ready.set()
 
-            while True:
-                method, args, kwargs = await loop.run_in_executor(pipe_awaiter, self._pipe.recv)
-                asyncio.create_task(getattr(self, method)(node, *args, **kwargs))
+                while True:
+                    method, args, kwargs = await loop.run_in_executor(pipe_awaiter, self._pipe.recv)
+                    asyncio.create_task(getattr(self, method)(node, *args, **kwargs))
 
-        try:
-            loop.run_until_complete(_run())
-        except KeyboardInterrupt:
-            logger.debug("Caught KeyboardInterrupt, shutting down")
+            coro = _run()
+            loop.run_until_complete(coro)
 
     def run_in_background(self, await_ready=True, timeout=None):
         """
@@ -96,7 +94,7 @@ class DHT(mp.Process):
         """
         self.start()
         if await_ready and not self.ready.wait(timeout=timeout):
-            raise TimeoutError(f"Server didn't notify .ready in {timeout} seconds")
+            raise TimeoutError(f"DHT didn't notify .ready in {timeout} seconds")
 
     def shutdown(self) -> None:
         """ Shut down a running dht process """

+ 3 - 1
hivemind/hivemind_cli/run_server.py

@@ -32,7 +32,9 @@ def main():
 
     parser.add_argument('--num_handlers', type=int, default=None, required=False,
                         help='server will use this many processes to handle incoming requests')
-    parser.add_argument('--max_batch_size', type=int, default=16384, required=False,
+    parser.add_argument('--min_batch_size', type=int, default=1,
+                        help='Minimum required batch size for all expert operations')
+    parser.add_argument('--max_batch_size', type=int, default=16384,
                         help='The total number of examples in the same batch will not exceed this value')
     parser.add_argument('--device', type=str, default=None, required=False,
                         help='all experts will use this device in torch notation; default: cuda if available else cpu')

+ 30 - 22
hivemind/server/__init__.py

@@ -65,16 +65,20 @@ class Server(threading.Thread):
             self.checkpoint_saver = None
         self.runtime = Runtime(self.experts, **kwargs)
 
+        if self.dht and self.experts:
+            self.dht_handler_thread = DHTHandlerThread(experts=self.experts, dht=self.dht, endpoint=self.listen_on,
+                                                       update_period=self.update_period)
+
         if start:
             self.run_in_background(await_ready=True)
 
     @classmethod
     def create(cls, listen_on='0.0.0.0:*', num_experts: int = None, expert_uids: str = None, expert_pattern: str = None,
                expert_cls='ffn', hidden_dim=1024, optim_cls=torch.optim.Adam, scheduler: str = 'none',
-               num_warmup_steps=None, num_total_steps=None, clip_grad_norm=None, num_handlers=None, max_batch_size=4096,
-               device=None, no_dht=False, initial_peers=(), dht_port=None, checkpoint_dir: Optional[Path] = None,
-               compression=CompressionType.NONE, stats_report_interval: Optional[int] = None, custom_module_path=None,
-               *, start: bool, **kwargs) -> Server:
+               num_warmup_steps=None, num_total_steps=None, clip_grad_norm=None, num_handlers=None, min_batch_size=1,
+               max_batch_size=4096, device=None, no_dht=False, initial_peers=(), dht_port=None,
+               checkpoint_dir: Optional[Path] = None, compression=CompressionType.NONE,
+               stats_report_interval: Optional[int] = None, custom_module_path=None, *, start: bool) -> Server:
         """
         Instantiate a server with several identical experts. See argparse comments below for details
         :param listen_on: network interface with address and (optional) port, e.g. "127.0.0.1:1337" or "[::]:80"
@@ -85,6 +89,7 @@ class Server(threading.Thread):
         :param expert_cls: expert type from hivemind.server.layers, e.g. 'ffn', 'transformer', 'det_dropout' or 'nop';
         :param hidden_dim: main dimension for expert_cls
         :param num_handlers: server will use this many parallel processes to handle incoming requests
+        :param min_batch_size: total num examples in the same batch will be greater than this value
         :param max_batch_size: total num examples in the same batch will not exceed this value
         :param device: all experts will use this device in torch notation; default: cuda if available else cpu
 
@@ -112,9 +117,6 @@ class Server(threading.Thread):
         """
         if custom_module_path is not None:
             add_custom_models_from_file(custom_module_path)
-
-        if len(kwargs) != 0:
-            logger.info("Ignored kwargs:", kwargs)
         assert expert_cls in name_to_block
 
         if no_dht:
@@ -172,6 +174,7 @@ class Server(threading.Thread):
                                                          num_warmup_steps=num_warmup_steps,
                                                          num_total_steps=num_total_steps,
                                                          clip_grad_norm=clip_grad_norm,
+                                                         min_batch_size=min_batch_size,
                                                          max_batch_size=max_batch_size)
 
         if checkpoint_dir is not None:
@@ -196,9 +199,7 @@ class Server(threading.Thread):
                 self.dht.run_in_background(await_ready=True)
 
             if self.experts:
-                dht_handler_thread = DHTHandlerThread(
-                    experts=self.experts, dht=self.dht, endpoint=self.listen_on, update_period=self.update_period)
-                dht_handler_thread.start()
+                self.dht_handler_thread.start()
         if self.checkpoint_saver is not None:
             self.checkpoint_saver.start()
 
@@ -207,16 +208,10 @@ class Server(threading.Thread):
                 process.start()
             process.ready.wait()
 
-        self.runtime.run()
-
-        for process in self.conn_handlers:
-            process.join()
-        if self.dht and self.experts:
-            dht_handler_thread.stop.set()
-            dht_handler_thread.join()
-        if self.checkpoint_saver is not None:
-            self.checkpoint_saver.stop.set()
-            self.checkpoint_saver.join()
+        try:
+            self.runtime.run()
+        finally:
+            self.shutdown()
 
     def run_in_background(self, await_ready=True, timeout=None):
         """
@@ -242,19 +237,32 @@ class Server(threading.Thread):
 
     def shutdown(self):
         """
-        Gracefully terminate a hivemind server, process-safe.
+        Gracefully terminate the server, process-safe.
         Please note that terminating server otherwise (e.g. by killing processes) may result in zombie processes.
         If you did already cause a zombie outbreak, your only option is to kill them with -9 (SIGKILL).
         """
         self.ready.clear()
+
         for process in self.conn_handlers:
             process.terminate()
+            process.join()
+        logger.debug("Connection handlers terminated")
+
+        if self.dht and self.experts:
+            self.dht_handler_thread.stop.set()
+            self.dht_handler_thread.join()
+
+        if self.checkpoint_saver is not None:
+            self.checkpoint_saver.stop.set()
+            self.checkpoint_saver.join()
 
         if self.dht is not None:
             self.dht.shutdown()
             self.dht.join()
 
-        self.runtime.shutdown()
+        logger.debug(f"Shutting down runtime")
+        self.runtime.stop.set()
+        logger.info("Server shutdown succesfully")
 
 
 @contextmanager

+ 4 - 1
hivemind/server/connection_handler.py

@@ -52,7 +52,10 @@ class ConnectionHandler(mp.context.ForkProcess):
             await server.wait_for_termination()
             logger.debug(f"ConnectionHandler terminated: (pid={os.getpid()})")
 
-        loop.run_until_complete(_run())
+        try:
+            loop.run_until_complete(_run())
+        except KeyboardInterrupt:
+            logger.debug('Caught KeyboardInterrupt, shutting down')
 
     async def info(self, request: runtime_pb2.ExpertUID, context: grpc.ServicerContext):
         return runtime_pb2.ExpertInfo(serialized_info=pickle.dumps(self.experts[request.uid].get_info()))

+ 2 - 2
hivemind/server/expert_backend.py

@@ -74,8 +74,8 @@ class ExpertBackend:
 
         self.backward_schema = (self.forward_schema, self.outputs_schema)  # inputs to backward
         self.grad_inputs_schema = self.forward_schema  # outputs from backward
-        self.forward_pool = TaskPool(self.forward, uid=f'{self.name}_forward', **kwargs)
-        self.backward_pool = TaskPool(self.backward, uid=f'{self.name}_backward', **kwargs)
+        self.forward_pool = TaskPool(self.forward, name=f'{self.name}_forward', **kwargs)
+        self.backward_pool = TaskPool(self.backward, name=f'{self.name}_backward', **kwargs)
 
         self.update_count = 0
         self.examples_processed = 0

+ 2 - 2
hivemind/server/expert_uid.py

@@ -62,8 +62,8 @@ def generate_uids_from_pattern(num_experts: int, expert_pattern: Optional[str],
                     uid.append(str(random.randint(slice_start, slice_end - 1)))
                 else:
                     raise ValueError("Block must be either fixed or a range [from:to]")
-            except KeyboardInterrupt as e:
-                raise e
+            except KeyboardInterrupt:
+                raise
             except Exception as e:
                 raise ValueError(f"Expert pattern {expert_pattern} has invalid block {block}, {e}")
         return UID_DELIMITER.join(uid)

+ 17 - 20
hivemind/server/runtime.py

@@ -48,8 +48,8 @@ class Runtime(threading.Thread):
         self.expert_backends = expert_backends
         self.pools = tuple(chain(*(expert.get_pools() for expert in expert_backends.values())))
         self.device, self.prefetch_batches, self.sender_threads = device, prefetch_batches, sender_threads
-        self.shutdown_recv, self.shutdown_send = mp.Pipe(duplex=False)
         self.ready = mp.Event()  # event is set iff server is currently running and ready to accept batches
+        self.stop = threading.Event()
 
         self.stats_report_interval = stats_report_interval
         if self.stats_report_interval is not None:
@@ -72,62 +72,59 @@ class Runtime(threading.Thread):
 
                 for pool, batch_index, batch in BackgroundGenerator(
                         self.iterate_minibatches_from_pools(), self.prefetch_batches):
-                    logger.debug(f"Processing batch {batch_index} from pool {pool.uid}")
+                    logger.debug(f"Processing batch {batch_index} from pool {pool.name}")
 
                     start = time()
                     outputs = pool.process_func(*batch)
                     batch_processing_time = time() - start
 
                     batch_size = outputs[0].size(0)
-                    logger.debug(f"Pool {pool.uid}: batch {batch_index} processed, size {batch_size}")
+                    logger.debug(f"Pool {pool.name}: batch {batch_index} processed, size {batch_size}")
 
                     if self.stats_report_interval is not None:
-                        self.stats_reporter.report_stats(pool.uid, batch_size, batch_processing_time)
+                        self.stats_reporter.report_stats(pool.name, batch_size, batch_processing_time)
 
                     output_sender_pool.apply_async(pool.send_outputs_from_runtime, args=[batch_index, outputs])
             finally:
-                logger.info("Shutting down")
-
-                if self.stats_report_interval is not None:
-                    self.stats_reporter.stop.set()
-                    self.stats_reporter.join()
-
                 self.shutdown()
 
-    SHUTDOWN_TRIGGER = "RUNTIME SHUTDOWN TRIGGERED"
-
     def shutdown(self):
         """ Gracefully terminate a running runtime. """
-        self.ready.clear()
-        self.shutdown_send.send(self.SHUTDOWN_TRIGGER)  # trigger background thread to shutdown
+        logger.info("Shutting down")
+
+        if self.stats_report_interval is not None:
+            self.stats_reporter.stop.set()
+            self.stats_reporter.join()
+
+        self.stop.set()  # trigger background thread to shutdown
+
+        logger.debug("Terminating pools")
         for pool in self.pools:
             if pool.is_alive():
                 pool.terminate()
                 pool.join()
+        logger.debug("Pools terminated")
 
     def iterate_minibatches_from_pools(self, timeout=None):
         """
         Chooses pool according to priority, then copies exposed batch and frees the buffer
         """
         with DefaultSelector() as selector:
-            selector.register(self.shutdown_recv, EVENT_READ, self.SHUTDOWN_TRIGGER)
             for pool in self.pools:
                 selector.register(pool.batch_receiver, EVENT_READ, pool)
 
-            while True:
+            while not self.stop.is_set():
                 # wait until at least one batch_receiver becomes available
                 logger.debug("Waiting for inputs from task pools")
                 ready_fds = selector.select()
                 ready_objects = {key.data for (key, events) in ready_fds}
-                if self.SHUTDOWN_TRIGGER in ready_objects:
-                    break  # someone asked us to shutdown, break from the loop
 
                 logger.debug("Choosing the pool with highest priority")
                 pool = max(ready_objects, key=lambda pool: pool.priority)
 
-                logger.debug(f"Loading batch from {pool.uid}")
+                logger.debug(f"Loading batch from {pool.name}")
                 batch_index, batch_tensors = pool.load_batch_to_runtime(timeout, self.device)
-                logger.debug(f"Loaded batch from {pool.uid}")
+                logger.debug(f"Loaded batch from {pool.name}")
                 yield pool, batch_index, batch_tensors
 
 

+ 60 - 70
hivemind/server/task_pool.py

@@ -6,7 +6,6 @@ import multiprocessing as mp
 import os
 import threading
 import time
-import uuid
 from abc import ABCMeta, abstractmethod
 from collections import namedtuple
 from concurrent.futures import Future
@@ -24,8 +23,8 @@ Task = namedtuple("Task", ("future", "args"))
 class TaskPoolBase(mp.context.ForkProcess, metaclass=ABCMeta):
     """ A pool that accepts tasks and forms batches for parallel processing, interacts with Runtime """
 
-    def __init__(self, process_func: callable, daemon=True):
-        super().__init__(daemon=daemon)
+    def __init__(self, process_func: callable, daemon=True, **kwargs):
+        super().__init__(daemon=daemon, **kwargs)
         self.process_func = process_func
         self._priority = mp.Value(ctypes.c_double, 1.0)  # higher priority = the more urgent to process this pool
 
@@ -63,19 +62,18 @@ class TaskPool(TaskPoolBase):
     :param process_func: function to be applied to every formed batch; called by Runtime
         Note that process_func should accept only positional args (Tensors) and return a flat tuple of Tensors
     :param max_batch_size: process at most this many inputs in a batch (task contains have one or several inputs)
+    :param name: pool name
     :param min_batch_size: process at least this many inputs in a batch, otherwise wait for more
     :param timeout: wait for a subsequent task for at most this many seconds
     :param pool_size: store at most this many unprocessed tasks in a queue
     :param prefetch_batches: prepare up to this many *batches* in background for faster off-loading to runtime
-    :param uid: pool identifier used for shared array allocation
     :param start: if True, start automatically at the end of __init__
     """
 
-    def __init__(self, process_func: callable, max_batch_size: int, min_batch_size=1,
-                 timeout=None, pool_size=None, prefetch_batches=1, uid=None, daemon=True, start=False):
-        super().__init__(process_func, daemon=daemon)
+    def __init__(self, process_func: callable, max_batch_size: int, name: str, min_batch_size=1,
+                 timeout=None, pool_size=None, prefetch_batches=1, daemon=True, start=False):
+        super().__init__(process_func, daemon=daemon, name=name)
         self.min_batch_size, self.max_batch_size, self.timeout = min_batch_size, max_batch_size, timeout
-        self.uid = uid or uuid.uuid4()
         self.prefetch_batches = prefetch_batches
 
         # interaction with ConnectionHandlers
@@ -112,7 +110,7 @@ class TaskPool(TaskPoolBase):
                 batch = []
                 total_size = 0
             try:
-                logger.debug(f"{self.uid} getting next task")
+                logger.debug(f"{self.name} getting next task")
                 task = self.tasks.get(timeout=self.timeout)
             except Empty:
                 logger.warning(f"Timeout reached but batch doesn't contain >={self.min_batch_size} elements yet")
@@ -134,80 +132,72 @@ class TaskPool(TaskPoolBase):
 
     def run(self, *args, **kwargs):
         torch.set_num_threads(1)
-        logger.info(f'{self.uid} starting, pid={os.getpid()}')
+        logger.info(f'{self.name} starting, pid={os.getpid()}')
         pending_batches = {}  # Dict[batch uuid, List[MPFuture]] for each batch currently in runtime
+
         output_thread = threading.Thread(target=self._pool_output_loop, args=[pending_batches],
-                                         name=f'{self.uid}_output')
+                                         name=f'{self.name}_output')
+
         try:
             output_thread.start()
             self._pool_input_loop(pending_batches, *args, **kwargs)
-        except BaseException as e:
-            # terminate output loop
-            self.outputs_sender.send(e)
+        except KeyboardInterrupt:
+            logger.debug('Caught KeyboardInterrupt, shutting down')
+        finally:
             output_thread.join()
-            raise e
 
     def _pool_input_loop(self, pending_batches: Dict[Any, List[Task]], *args, **kwargs):
         """ Infinite loop: aggregate tasks into batches and send them to runtime """
-        try:
-            prev_num_tasks = 0  # number of tasks currently in shared buffer
-            batch_index = max(pending_batches.keys(), default=0)
-            batch_iterator = self.iterate_minibatches(*args, **kwargs)
-
-            while True:
-                # SIDE-EFFECT - compute pool priority from timestamp of earliest undispatched task
-                # assumes that tasks are processed in the same order as they are created
-                for skip_i in range(prev_num_tasks):
-                    finished_task_timestamp = self.undispatched_task_timestamps.get()  # earlier timestamp = higher priority
-                    if skip_i == prev_num_tasks - 1:
-                        self.priority = finished_task_timestamp
-
-                logger.debug(f"{self.uid} getting next batch")
-                batch_tasks = next(batch_iterator)
-                # save batch futures, _output_loop will deliver on them later
-                pending_batches[batch_index] = batch_tasks
-
-                logger.debug(f"{self.uid}, batch  {batch_index}: aggregating inputs")
-                # find or create shared arrays for current batch size
-                batch_inputs = [torch.cat([task.args[i] for task in batch_tasks]) for i in
-                                range(len(batch_tasks[0].args))]
-                batch_inputs = [inp.detach().requires_grad_(inp.requires_grad).share_memory_() for inp in batch_inputs]
-
-                logger.debug(f"{self.uid}, batch {batch_index}: sending to runtime")
-                self.batch_sender.send((batch_index, batch_inputs))
-                logger.debug(f"{self.uid}, batch {batch_index}: sent to runtime")
-                prev_num_tasks = len(batch_tasks)
-                batch_index += 1
-        except KeyboardInterrupt:
-            logger.debug('Caught KeyboardInterrupt, shutting down')
+
+        prev_num_tasks = 0  # number of tasks currently in shared buffer
+        batch_index = max(pending_batches.keys(), default=0)
+        batch_iterator = self.iterate_minibatches(*args, **kwargs)
+
+        while True:
+            # SIDE-EFFECT - compute pool priority from timestamp of earliest undispatched task
+            # assumes that tasks are processed in the same order as they are created
+            for skip_i in range(prev_num_tasks):
+                finished_task_timestamp = self.undispatched_task_timestamps.get()  # earlier timestamp = higher priority
+                if skip_i == prev_num_tasks - 1:
+                    self.priority = finished_task_timestamp
+
+            logger.debug(f"{self.name} getting next batch")
+            batch_tasks = next(batch_iterator)
+            # save batch futures, _output_loop will deliver on them later
+            pending_batches[batch_index] = batch_tasks
+
+            logger.debug(f"{self.name}, batch  {batch_index}: aggregating inputs")
+            # find or create shared arrays for current batch size
+            batch_inputs = [torch.cat([task.args[i] for task in batch_tasks]) for i in
+                            range(len(batch_tasks[0].args))]
+            batch_inputs = [inp.detach().requires_grad_(inp.requires_grad).share_memory_() for inp in batch_inputs]
+
+            logger.debug(f"{self.name}, batch {batch_index}: sending to runtime")
+            self.batch_sender.send((batch_index, batch_inputs))
+            logger.debug(f"{self.name}, batch {batch_index}: sent to runtime")
+            prev_num_tasks = len(batch_tasks)
+            batch_index += 1
 
     def _pool_output_loop(self, pending_batches: Dict[Any, List[Task]]):
         """ Infinite loop: receive results from runtime and dispatch them to task Futures """
 
-        try:
-            while True:
-                logger.debug(f"{self.uid} waiting for results from runtime")
-                payload = self.outputs_receiver.recv()
-                if isinstance(payload, BaseException):
-                    raise payload
-                else:
-                    batch_index, batch_outputs = payload
-                logger.debug(f"{self.uid}, batch {batch_index}: got results")
-
-                # split batch into partitions for individual tasks
-                batch_tasks = pending_batches.pop(batch_index)
-                task_sizes = [self.get_task_size(task) for task in batch_tasks]
-                outputs_per_task = zip(*(torch.split_with_sizes(tensor, task_sizes, dim=0) for tensor in batch_outputs))
-                logger.debug(f"{self.uid}, batch {batch_index}: sending outputs to handlers")
-
-                # dispatch results to futures
-                for task, task_outputs in zip(batch_tasks, outputs_per_task):
-                    try:
-                        task.future.set_result(tuple(task_outputs))
-                    except FutureStateError as e:
-                        logger.debug(f"Failed to send task result due to an exception: {e}")
-        except KeyboardInterrupt:
-            logger.debug(f"Caught KeyboardInterrupt, shutting down")
+        while True:
+            logger.debug(f"{self.name} waiting for results from runtime")
+            batch_index, batch_outputs = self.outputs_receiver.recv()
+            logger.debug(f"{self.name}, batch {batch_index}: got results")
+
+            # split batch into partitions for individual tasks
+            batch_tasks = pending_batches.pop(batch_index)
+            task_sizes = [self.get_task_size(task) for task in batch_tasks]
+            outputs_per_task = zip(*(torch.split_with_sizes(tensor, task_sizes, dim=0) for tensor in batch_outputs))
+            logger.debug(f"{self.name}, batch {batch_index}: sending outputs to handlers")
+
+            # dispatch results to futures
+            for task, task_outputs in zip(batch_tasks, outputs_per_task):
+                try:
+                    task.future.set_result(tuple(task_outputs))
+                except FutureStateError as e:
+                    logger.debug(f"Failed to send task result due to an exception: {e}")
 
     @property
     def empty(self):