Michael Diskin 4 лет назад
Родитель
Сommit
06678fadb6
1 измененных файлов с 82 добавлено и 0 удалено
  1. 82 0
      examples/albert/TPU.py

+ 82 - 0
examples/albert/TPU.py

@@ -0,0 +1,82 @@
+# Copyright 2020 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""
+A simple launcher script for TPU training
+Inspired by https://github.com/pytorch/pytorch/blob/master/torch/distributed/launch.py
+::
+    >>> python xla_spawn.py --num_cores=NUM_CORES_YOU_HAVE
+               YOUR_TRAINING_SCRIPT.py (--arg1 --arg2 --arg3 and all other
+               arguments of your training script)
+"""
+
+
+import importlib
+import sys
+from argparse import REMAINDER, ArgumentParser
+from pathlib import Path
+
+import torch_xla.distributed.xla_multiprocessing as xmp
+
+
+def parse_args():
+    """
+    Helper function parsing the command line options
+    @retval ArgumentParser
+    """
+    parser = ArgumentParser(
+        description=(
+            "PyTorch TPU distributed training launch "
+            "helper utility that will spawn up "
+            "multiple distributed processes"
+        )
+    )
+
+    # Optional arguments for the launch helper
+    parser.add_argument("--num_cores", type=int, default=1, help="Number of TPU cores to use (1 or 8).")
+
+    # positional
+    parser.add_argument(
+        "training_script",
+        type=str,
+        help=(
+            "The full path to the single TPU training "
+            "program/script to be launched in parallel, "
+            "followed by all the arguments for the "
+            "training script"
+        ),
+    )
+
+    # rest from the training program
+    parser.add_argument("training_script_args", nargs=REMAINDER)
+
+    return parser.parse_args()
+
+
+def main():
+    args = parse_args()
+
+    # Import training_script as a module.
+    script_fpath = Path(args.training_script)
+    sys.path.append(str(script_fpath.parent.resolve()))
+    mod_name = script_fpath.stem
+    mod = importlib.import_module(mod_name)
+
+    # Patch sys.argv
+    sys.argv = [args.training_script] + args.training_script_args + ["--tpu_num_cores", str(args.num_cores)]
+
+    xmp.spawn(mod._mp_fn, args=(), nprocs=args.num_cores)
+
+
+if __name__ == "__main__":
+    main()